学界丨神经网络之父 Geoffrey Hinton:深度学习的下一个飞跃是什么?

Geoffrey Hinton,图源网络

AI 科技评论按: Geoffrey Hinton 被尊称为“神经网络之父”,他将神经网络带入到研究与应用的热潮,将“深度学习”从边缘课题变成了谷歌等互联网巨头仰赖的核心技术,并将 HintonBack Propagation(反向传播)算法应用到神经网络与深度学习,还提出了“Dark Knowledge”概念。

Geoffrey Hinton 曾获得爱丁堡大学人工智能的博士学位,并且为多伦多大学的特聘教授。在 2012 年,Hinton 还获得了加拿大基廉奖(Killam Prizes,有“加拿大诺贝尔奖”之称的国家最高科学奖)。2013 年,Hinton 加入谷歌并带领一个 AI 团队,目前正进行着谷歌大脑的项目。

近日,外媒 gigaom 采访了这位大牛,问题主要和人工智能相关,大家可以和 AI 科技评论一起看看他是怎么回答的:

Q:您被称作“神经网络之父”,那您认为在有生之年“真正的”人工智能会出现吗?

A:这取决于你对“真正的”人工智能定义是什么。如果你是说在自然语言、感知、推理、运动等方面都能和人类水平相当的人工智能体,我觉得我大概是看不到了。不过,五年后会发生什么我们很难预测,所以我不去排除这样的可能性。在十年前,很多 AI 工作者认为用神经网络完成机器翻译是不可能的,因为这需要让神经网络从原始训练数据中获取所有语言知识。但在今天,这就是机器翻译使用的方法,而且是最好的。神经网络翻译显著地缩小了机器和人工之间翻译水平的差距。

Q :如果真正的人工智能出现,您有什么担心的吗?

A:说实话,我不太担心现在大家经常讨论的那些问题,就是说变坏的机器人会代替人类接管世界。我更担心的是诸如希特勒、墨索里尼这样的人在科技的帮助下可能会做的事儿。如果这些人拥有智能机器人,后果不堪设想。我认为现在最迫切的一件事就是对 AI 的军事化制定相关的国际政策或者协议。

Q:您认为未来人工智能对经济和劳动力会有什么影响呢?利大于弊还是弊大于利?

A:我们可以看到,如今 ATM 机等机器已经帮助人们减少了大量繁重的工作,提高了生产效率。我想应该很少有人会觉得这些机器不应该被引入。在一个相对公平公正的政治制度下,能够提高生产力的技术肯定会受到公众的欢迎,因为这会帮助每个人的生活变得更好。技术本身不是问题,问题是社会制度能不能保障每个人都受益。

Q:您认为深度学习下一个大的飞跃会是什么?

A:目前,我们已经在一些近半个世纪里都没有解决的难题上获得了前所未有的进展。语音识别、图像识别技术都已经获得了巨大的进步,并且会变得更好。我相信,不久的未来计算机就能理解视频里讲了些什么。

此外,最近神经网络也开始接管机器翻译。我们几乎每周都能看到深度神经网络在一些有商业化价值的新领域获得成功。二十几年前,深度学习技术才出现在人们视野中,现在已经取得了非常惊人的成果。更出色的神经元类型和架构使得更深层次的网络上可以进行更多,更好的学习任务。深度学习已经吸引了大量的人才和资金,我想这些还会一直持续下去。

值得关注的一点是,我们应该付出更多的努力让神经网络可以真正理解文档的内容,其中包括开发新类型的临时存储器。这个话题现在很热门。

不过,现在我们还有一个问题没有解决。那就是如何从少量的数据中生成良好的神经网络,我觉得这可能需要彻底改变现在使用的神经元类型。

在进行深度学习的应用过程中,我们会得到一些宝贵的经验教训,这给进一步研究提供了新的视角,比如帮我们更好地理解真正的神经元是如何学习任务的。我认为这对深度学习的未来应用会产生巨大的影响。

Via gigaom ,AI 科技评论编译。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-01-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

Science组织了一场尖锐的Reddit问答,Yann LeCun的回答还是那么耿直

32913
来自专栏大数据挖掘DT机器学习

听说你想做 AI 工程师?

AI 时代已经到来!人工智能已经不是只有在科幻小说和电影中才会出现的东西,现在它离我们越来越近,而且已经渗透到各行各业。从百度的无人驾驶车,到现在的阿里人脸识...

34512
来自专栏量子位

中科院自动化所王亮:由AI Challenger漫谈数据集的重要性

李根 发自 凹非寺 量子位 报道 | 公众号 QbitAI AI火热,但并不是所有人都清楚“数据集”的意义。 首届“AI Challenger·全球AI挑战赛...

3667
来自专栏AI科技评论

学界 | 李飞飞最新论文:结合深度学习和谷歌街景来估算美国人口结构

AI科技评论按:最近,一篇名为《Using Deep Learning and Google Street View to Estimate the Demog...

27911
来自专栏大数据文摘

深度学习,未来机器人的进化途径

1515
来自专栏陈树义

书值 | 第 1 期:如何在1年内完成大学四年的课程?

这本书是一个因快速学习而成名的美国小伙 Scott Young 写的,名字是《如何高效学习 (豆瓣)》。他用 10 天搞定线性代数,用 1 年的时间学习完 MI...

522
来自专栏新智元

【干货】胡郁:科大讯飞的深度学习之路(PPT下载)

【新智元导读】科大讯飞轮值总裁胡郁今天在“第三届网易未来科技峰会”发表演讲,介绍科大讯飞深度学习发展之路:从2010年开展DNN语音识别研究,2011年上线首个...

4348
来自专栏大数据文摘

【干货】如何设计伟大的数据产品

2427
来自专栏TEG云端专业号的专栏

腾讯征战CWMT2018获英汉翻译和总成绩第一

2264
来自专栏机器之心

通向未来人工智能的三条赛道:高性能计算、神经形态计算和量子计算

选自datasciencecentral 作者:William Vorhies 机器之心编译 参与:黄小天、蒋思源 有三种技术,可以带来更快、更简单、更廉...

32811

扫码关注云+社区