【解析】从BAT看企业构建大数据体系的六层级

注:在迅雷公司内部做了分享《大数据成为生产力》 ,150页的PPT,内容太多,删减掉一些敏感信息,汇总主要观点浓缩成为此文,或许对大家构建企业的大数据运营体系有些参考作用。 本文将企业大数据体系的构建分为六个层级,但并非是线性过程,每个层级之间或有基础关系,但并不是说一定要逐层构建。例如创业型公司,在缺乏数据研发实力的时候,多数会借助第三方平台进行数据上报与分析。 下面一张图,是本文的精华概括,后面一一展开与大家探讨。

一、数据基础平台 基础的数据平台建设工作,包含数据平台建设,数据规范,数据仓库、产品数据规范,产品ID,用户ID,统一SDK等。 很多公司的数据无法有效利用,就是缺乏统一规范,产品数据上报任由开发按照自己的理解和习惯上报,没有标准化的SDK和上报协议,并且数据散落在各个部门产品的服务器,无法构建结构化的数据仓库。 做数据平台的架构,很多人会理解为高大上的技术活,其实整个数据平台价值的体现,需要公司各个部门的配合,例如关键数据指标体系的建立,需要从各个部门业务指标进行提炼,并得到业务部门认可。常见的关键指标有:DAU、PCU、WAU、MAU、按天留存率(1-30日留存)、累计留存率(7日、14日、30日累计留存率),新增用户,有效新增用户,活跃转化率,付费转化率,收入指标,ARPU人均收入,渠道效果数据等。 下图是腾讯和阿里的数据平台架构

阿里大数据业务架构:

阿里云梯分布式计算平台整体架构:

二、数据报表与可视化 在第一层级中,进行数据指标体系规范,统一定义,统一维度区分,就可以很方便的进行标准化可配置数据报表设计,直观的可视化输出设计,包括行为、收入、性能、质量等多种数据类别。 在PPT中以友盟、迅雷、百度、腾讯等公司的数据报表体系进行详细讲解。 腾讯数据门户

阿里数据地图

三、产品与运营分析 在建立数据平台和可视化基础上,对已有的用户行为、收入数据等进行各种分析,输出日报、周报、月报、各种专题分析报告。常见的数据分析工作如下: 1. A/B TEST进行产品分析优化; 2. 运用漏斗模型进行用户触达分析,如TIPS、广告等曝光到活跃的转化; 3. 收入效果监控与分析,包含付费转化率、渠道效果数据等; 4. 业务长期健康度分析,例如从用户流动模型、产品生命周期分析产品成长性和健康度; 5. 营销推广活动的实时反馈; 用户画像也是常见的数据分析方式,包括用户如性别、年龄、行为、收入、兴趣爱好、消费行为、上网行为、渠道偏好、行为喜好、生活轨迹与位置等,反映用户各种特征,以达到全面的了解用户,针对性的为用户提供个性化服务的目的,通常每半年做一次用户画像的专题分析。 下图是常见的数据分析思路:

常用分析工具:EXCLE,SPSS,SAS,Enterprise Miner,Clementine,STATISTICA。个人用的比较多的是:EXCEL和SPSS。 下图是SPSS常用的数据分析与挖掘方法:

四、精细化运营平台 基于数据基础上搭建的精细化运营平台,主要的平台逻辑多数是进行用户细分,商品和服务细分,通过多种推荐算法的组合优化进行商品和服务的个性化推荐。另外还有针对不同产品生命周期,用户生命周期构建的产品数据运营体系。

五、数据产品 广义的数据产品非常多,例如搜索类,天气预报类等等。这里主要讲狭义的数据产品,以BAT三家公司的数据产品为例进行分享。 腾讯:广点通、信鸽 阿里:数据魔方、淘宝情报、淘宝指数、在云端 百度:百度预测、百度统计、百度指数、百度司南、百度精算 截取几张PPT如下:

六、战略分析与决策 战略分析与决策层,更多的是跟很多传统的战略分析、经营分析层面的方法论相似,最大的差异是数据来自于大数据。 有很多企业错误的把“业务运营监控层”和“用户/客户体验优化层”做的事情放在经营分析或者战略分析层来做。傅志华认为“业务运营监控层”和“用户/客户体验优化层”更多的是通过机器、算法和数据产品来实现的,“战略分析”、“经营分析”更多的是人来实现。很多企业把机器能做的事情交给了人来做,这样导致发现问题的效率较低。 建议是,能用机器做的事情尽量用机器来做好“业务运营监控层”和“用户/客户体验优化层”,在此基础上让人来做人类更擅长的经验分析和战略判断。 在变化极快的互联网领域,在业务的战略方向选择上,数据很难预测业务的大发展方向,如果有人说微信这个大方向是通过数据挖掘和分析研究出来,估计产品经理们会笑了。从本质上来说,数据在精细化营销和运营中能起到比较好的作用,但在产品策划、广告创意等创意性的事情上,起到的作用较小。但一旦产品创意出来,就可以通过灰度测试,数据验证效果了。

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2014-07-07

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据钻研

独访二十年大数据工程师的中肯意见!

今天有幸访问到一名资深大数据工程师,为我们解答许多心中疑问! TalkingData是中国最大的独立第三方移动数据服务平台 一、TalkingData公司目...

3025
来自专栏华章科技

从BAT看企业构建大数据体系的六层级

注:本文的主要内容是在迅雷公司内部做了分享《大数据成为生产力》 ,150页的PPT,内容太多,讲的速度有些快。删减掉一些敏感信息,汇总主要观点浓缩成为此文,或许...

623
来自专栏数据猿

中国移动大数据总架构师段云峰:无所不在的大数据分析

<数据猿导读> 中国移动大数据总架构师段云峰在2016年中国信息通信大数据大会上发表了以“无所不在的大数据分析”为主题的演讲.他主要给大家分享了中国移动在系统架...

2838
来自专栏云计算D1net

迈向云服务 要清楚的几件事

向云过渡前,数据中心用户真正应该关心的问题是什么?面对不同的服务需求,数据中心应该寻找什么样的云技术进行改造?决定云计算数据中心效率、能耗、管理等问题的关键技术...

2485
来自专栏奇点大数据

大数据、人工智能与云计算的融合与应用

摘 要:通过对数据处理阶段性发展的解析,分析大数据、人工智能技术的发展趋势。结合实际生产需求,验证了基于容器云架构的新一代大数据与人工智能平台在数据分析、处理、...

1014
来自专栏大数据文摘

从BAT看企业构建大数据体系的六层级

2476
来自专栏大数据挖掘DT机器学习

【解析】BI系统的应用组织思路与数据分析模式

BI商业智能软件一般都会提供若干数据整合、数据查询、分析与评价、数据可视化及数据分享的手段,但是在BI项目的构建与实施过程中,如果不按照一定的应用组织思路...

3143
来自专栏云计算D1net

拉回人间,高大上的云计算怎样发挥价值

信息技术的变革总是随着时间不断扩大其影响范围,而在此之前大多数企业会选择观察和等待时机成熟。云计算就处在这样一个特殊的时期,宣传已经足够,那么如何把其力量最大化...

3397
来自专栏PPV课数据科学社区

数据共享并非数据开放

在过去的一年中,我们注意到这样一种令人烦恼的趋势:政府将数据分享作为数据广泛开放政策的一部分。(政府支持数据分享,好像只是为了迎合数据广泛开放政策,而非真正意义...

2705
来自专栏云计算D1net

云计算:数字化转型的重要伙伴

尽管在过去十年中,企业在云计算方面已经积累了丰富的经验,但在建立正确的服务、架构和通用功能以产生最佳的数据环境时,仍有许多不确定的问题。 这部分在于要转变对云计...

3016

扫描关注云+社区