【热点】大数据能让博彩公司破产

谈到数据分析,有些行业一直遥遥领先。博彩业就是其中之一。不过,大数据技术也正在使博彩业的“预测”能力大众化,这对于博彩公司而言是一个坏消息。利用大数据帮助投注者“击败庄家”的分析公司正不断涌现。

多年以来,数据处理和智能预测手段为网络及街边的投注站提供了便利的条件,从足总杯决赛到皇室宝宝(关于威廉王子和凯特王妃之子的投注),博彩项目可谓花样繁多。数据能让他们按各种模糊变量开出赔率,这些变量可能是足球比赛中的首个角球,也可能是某场板球比赛结束时攻方的得分数。

此类数据的规模持续快速地发展壮大。现今,对于每支球队的每位球员,均会产生大量可用于预测比赛结果的数据。博彩公司将预测模型技术应用于这些不断增加的数据集,产生越来越多的博彩机会。

笔者做了一项统计,世界杯期间,一家在线博彩公司仅针对一场比赛就提供了328种选项。如今,对于博彩公司而言,一个关键性挑战是能否迅速地做到这一点,以便可以实时改变赔率,同时,让投注者几乎可以在比赛的任何时段下注。

例如,Betegy公司声称,可以通过一种复杂算法,准确预测90%的英超比赛结果。他们会分析每一种可能影响比赛的因素,从最近表现和进球平均数等基础统计数据,到天气影响和激励政策等更为复杂的因素。

这引出了以下问题:那些痴迷数据的体育迷何时才能利用自己的算法在与博彩公司的对弈中取胜?大数据能否毁掉博彩行业?大数据技术大多是免费的。Hadoop是一种先进的大数据技术,采用了被称为“R语言”的高性能预测分析工具,其源码是开放的,这意味着他们免费提供下载。只要我用不到400英镑买下一台存储容量为1Tb的电脑,我就有足够能力去建立十分复杂的模型。我们可以装载各种不同的统计数据和已知结果,从而实现类似神经网络这类尖端技术。该软件会根据所有可用数据建立“最佳匹配”模型,结果10次中有9次会击败“专家”,而且击败博彩公司也将会司空见惯。

笔者最喜欢的一个例子就是,2011年电影《点球成金》所讲述的小人物运用数据击败大专家的故事。这是“奥克兰运动家”棒球队经理Billy Beane(由布拉德·皮特饰演)的真实故事,影片讲述了他获取和运用大量的球员统计数据,以顶级球队1/3的预算成功打造出一支战绩显赫的棒球队。如今,我们确实能得到大量关于队员表现及比赛相关的数据,我们可以借此研究众多的国际体育赛事,从而为梦幻球队制定决策,或者在埃普索姆赛马场以3.15倍赔率选中胜者。

足球专家会说,这些模型不能替代对比赛规则的了解,也不能回避众多影响因素,比如,谁状态良好,球队采用什么策略,还有那些各种各样的更衣室事件。上述情况也适用于洛杉矶警察局。该局警官从来就不相信电脑会告诉他们该如何工作。但当使用原计划用于建立地震数学模型的预测技术来预测潜在犯罪现场时,他们发现自己从前的认识是错误的。他们将警官派往预测可能发生犯罪行为的地点,最后结果是,入室盗窃案减少33%,暴力犯罪减少21%,涉财犯罪减少12%。

所以说,如果你精通电脑,就可以充分利用现今有利于你的分析软件,它值得尝试。不要只关注胜队和进球数这些较传统的投注结果,使用基础预测分析软件可以十分灵活地对更不确定的结果进行投注。

博彩公司侧重于尽快提供对每一种结果的分析。而对于我们大多数人而言,采用稍显谨慎、成本较低的大数据建模来预测某一结果(比如进球先后),可能会有所斩获。观察你的模型给出哪些与博彩公司赔率不同的结果,这可能是一种不错的起步方法——在他们设定的规则下,你又向最终击败他们迈近了一步。

当博彩公司的赔率被数据研究人员战胜时,他们还能给我开多大的赔率呢?或许值得一赌。一旦发生这种情况,笔者认为,我们会看到赔率逐渐降低到某个点,以抵消普通大众不断增强的数据处理能力。

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2014-07-14

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏华章科技

阿里巴巴为什么要选择星际争霸作为AI算法研究环境?

《星际争霸》一直是游戏玩家心目中即时战略类的经典之作,历时十多年而不衰。而如今它更成为深度强化学习、人工智能算法研究的一个主要平台和工具。因为其蕴含了多智能体协...

9510
来自专栏CreateAMind

人工智能任务的分类 (智力发展简单梳理)

为了实现AI-Complete(AI-Hard,AI完全)问题,我们需要一些测量方法,最著名的测量方法当属图灵测试。一个可以解决AI完全问题的机器应该在必要辅助...

95140
来自专栏AI科技评论

Facebook和Google们现在努力的AI方向,会不会错了?

深度学习的坎坷之路 2012年11月23日,应该是一个让时任谷歌人工智能实验室专家的Geoff Hinton倍感欣慰的日子,在这一天,纽约时报发布了名为《Sci...

39860
来自专栏CDA数据分析师

什么是“探索性数据分析"?

在大数据时代,混乱的、无结构的、多媒体的海量数据,通过各种渠道源源不断地积累和记载着人类活动的各种痕迹。探索性数据分析可以成为了一个有效的工具。 美国约翰·怀尔...

47750
来自专栏量子位

萌新误入AI歧途怎么办?MIT博士小哥哥给你指条明路

做研究,特别是在AI领域做研究,时常挑战人类的智力极限和心理极限。来自MIT的汤姆,入坑已有两年,并在坑里向广大准同行们发来了倾心打造的攻略,帮助大家在漫漫夜路...

12230
来自专栏大数据文摘

[股市实战秘籍]用新闻联播情绪指标炒股

28840
来自专栏大数据文摘

如何用数学知识提升情商?数学学霸们的6大思维习惯

18450
来自专栏算法channel

铁粉巨献:我是如何从coding菜鸟,走向科大讯飞AI工程师的

19440
来自专栏PPV课数据科学社区

天龙八部:一张图告诉你如何8步炼成数据科学家

如何成为一个数据科学家?不少刚刚接触这个领域的探索者都在寻找一条尽可能正确的道路。 OK, 这条道路确实不是无迹可寻的。虽然并不简单,但是,通过科学的规划和足...

383120
来自专栏新智元

【人在环中】机器学习的未来

现在机器学习已经变得越来越主流,一些设计模式渐渐浮现。作为CrowdFlowe的CEO,我与许多构建机器学习算法的公司合作过。我发现了在几乎任何一个成功将机器学...

36850

扫码关注云+社区

领取腾讯云代金券