A星路径搜索

摘要:

  在人工智能中有一类问题是有确定解的,如路径、五子棋等,这样的问题非常适合使用搜索来解决。 路径搜索是一个很有趣的问题,在人工智能中算是很基础的问题。最近一直在读《Artificial Intelligence-A Modern Approach》,搜索部分看完印象最深的就是A星算法了,这个在游戏开发中也最常用。于是乎做个总结,明天就掀过这篇了。

路径搜索算法:

Dijkstra:

  Dijkstra 最短路径算法,大学数据结构教科书上都讲过,这里也不赘述了。但是为了及和一下几个算法做比较,我google 了一个图,非常直接的显示Dijkstra算法的搜索过程:

  图中以中心为起点,以辐射状不断向中心外搜索(每次取距离起点最近的点),一圈一圈向外扩张,直到逼近目标点,完成路径搜索。

Best-First-Search:

  BSF 每次扩张节点,都选择最接近目标的节点。Dijkstra 是每次都选择据起点最近的节点。区别是到起点的距离总是已知的,而都终点的距离只能是估计的。所以BSF 提供了启发式函数h。常见的启发式函数h有:

  • 基于绝对距离,计算当前节点到目标点的绝对距离(此时并不能知晓该路径是否可行,也许会有阻碍)
  • 基于方向的,如果目标在东方,那么只向东南、东、东北三个方向扩展,在障碍物少的情况下,BSF可以非常快、非常直接的搜索到目标。如果因障碍阻塞,改变了路径方向,BSF找到的不一定是最近的路径。

A 星算法

  A 星算法兼具Dijkstra 准确和 BSF 的快速,在搜索路径时,通过启发式函数h 计算当前节点到目标节点的距离,而起点到当前点距离已知,则每次选择f = g + h 最小的节点。A星总是尝试找到最短的路径,阻碍物少的情况下性能接近BSF。

A 星算法原理

A 星算法实现

主逻辑实现:

int astar_t::search_path(uint32_t from_index, uint32_t to_index, vector<uint32_t>& path_)
{
    //! open 表中保存待扩展的节点
    //! visited 保存此次搜索访问过的节点,待搜索完成,将其状态恢复到默认状态
    open_table_t        open;
    vector<map_node_t*> visited;

    search_node_t current;
    search_node_t neighbor_node;
    vector<map_node_t*> neighbors;

    //! 先将起始点加入到open 表中
    current.set_pos_index(from_index);
    open.insert(current);

    visited.push_back(m_map.get_node(current.get_pos_index()));

    //! 大循环,直到open为空(找不到目标) 或 找到目标
    while (false == open.empty()) {
        open.pop_first(current);
        
        if (current.get_pos_index() == to_index)
        {
            break;
        }

        //! 添加到close 表
        m_map.get_node(current.get_pos_index())->set_closed();
    
        //! 找到当前节点的所有邻居节点, 不同的游戏中该函数实现可能不同
        //! 有的游戏可以走斜线,而有些不能,如坦克大战就不能走斜线
        m_map.get_neighbors(current.get_pos_index(), neighbors);

        for (size_t i = 0; i < neighbors.size(); ++i)
        {
            map_node_t* neighbor_map_node = neighbors[i];
            neighbor_node.set_pos_index(neighbor_map_node->get_pos_index());
            
            //! 计算该点的 g 和 h 值
            neighbor_node.set_gval(m_map.distance(current.get_pos_index(), neighbor_map_node->get_pos_index()));
            neighbor_node.set_hval(m_map.heuristic(neighbor_map_node->get_pos_index(), to_index));

            //! 如果该点已经在open表中,检查g值,若g值更小,说明当前路径更近,更新open表
            if (true == neighbor_map_node->is_open())
            {
                if (neighbor_node.get_gval() < neighbor_map_node->get_gval())
                {
                    open.update(neighbor_map_node->get_fval(), neighbor_node);
                    neighbor_map_node->set_gval(neighbor_node.get_gval());
                    neighbor_map_node->set_hval(neighbor_node.get_hval());
                    neighbor_map_node->set_parrent(current.get_pos_index());
                }
            }
            //! 如果该点既没有在open,也没有在close中,直接添加到open
            else if (false == neighbor_map_node->is_closed())
            {
                open.insert(neighbor_node);
                neighbor_map_node->set_open();
                neighbor_map_node->set_parrent(current.get_pos_index());
                visited.push_back(neighbor_map_node);
            }
            //! 如果已经在close 中,简单跳过
            else {} //! closed ignore
        }
        neighbors.clear();
    }

    //! 找到了目标,逆序遍历,得到完整的路径
    if (current.get_pos_index() == to_index)
    {
        path_.push_back(current.get_pos_index());
        uint32_t next = m_map.get_node(current.get_pos_index())->get_parrent();
        while (next != from_index)
        {
            path_.push_back(next);
            next = m_map.get_node(next)->get_parrent();
        }
        path_.push_back(from_index);
    }
    
    //! 最后将所有的已访问过的节点状态清楚, 为下次搜索做准备
    for (size_t i = 0; i < visited.size(); ++i)
    {
        visited[i]->clear();
    }
    visited.clear();
    return 0;
}

A 星数据结构

  1. open 表,维护待扩展的节点,每次从其中找到f = g + h 最小的节点,由pop_first 实现

  open 表 是按照f = g + h 由大到小顺排序的,是一个multimap

typedef multimap<uint32_t, search_node_t> table_t;
    struct open_table_t
    {
        table_t nodes;
        bool empty() { return nodes.empty(); }
        int pop_first(search_node_t& ret)
        {
            table_t::iterator it = nodes.begin();
            ret = it->second;
            nodes.erase(it);
            return 0;
        }
        void insert(const search_node_t& node_)
        {
            nodes.insert(make_pair(node_.get_fval(), node_));
        }
        void update(uint32_t old_, const search_node_t& node_)
        {
            pair<table_t::iterator, table_t::iterator> ret = nodes.equal_range(old_);
            table_t::iterator it = ret.first;
            for (; it != ret.second; ++it)
            {
                if (it->second == node_)
                {
                    //! 可以优化, 如果前一个比该节点小,才需要删除
                    nodes.erase(it);
                }
            }
            this->insert(node_);
        }
    };

2. map 管理器

  map 管理器记录所有地图信息,记录某个坐标其相邻坐标信息,记录某个坐标是否可通行信息、地图的宽、高等、两点的距离等。map管理器中维护一个二维数组

 map_mgr_t(uint32_t width_, uint32_t height_):
            m_map_nodes(NULL),
            m_width(width_),
            m_height(height_)
        {
            m_map_nodes = (map_node_t*)malloc(m_width * m_height * sizeof(map_node_t));
            for (uint32_t i = 0; i < m_height; ++i)
            {
                for (uint32_t j = 0; j < m_width; ++j)
                {
                    new(m_map_nodes + i * m_width + j) map_node_t(i * m_width + j);
                }
            }
        }

3.  获取邻居节点方法如下,限制不能斜着走,不同的游戏可能有不同的实现

void get_neighbors(uint32_t pos_, vector<map_node_t*>& ret_)
        {
            map_node_t* tmp = m_map_nodes + pos_ - 1;
            if (tmp >= m_map_nodes && tmp < m_map_nodes + m_height * m_width && tmp->is_can_pass())
            {
                ret_.push_back(tmp);
            }
            tmp = m_map_nodes + pos_ + 1;
            if (tmp >= m_map_nodes && tmp < m_map_nodes + m_height * m_width && tmp->is_can_pass())
            {
                ret_.push_back(tmp);
            }
            tmp = m_map_nodes + pos_ - m_width;
            if (tmp >= m_map_nodes && tmp < m_map_nodes + m_height * m_width && tmp->is_can_pass())
            {
                ret_.push_back(tmp);
            }
            tmp = m_map_nodes + pos_ + m_width;
            if (tmp >= m_map_nodes && tmp < m_map_nodes + m_height * m_width && tmp->is_can_pass())
            {
                ret_.push_back(tmp);
            }
        }

4. 启发式函数

  由于不能斜着走,那么启发式函数h 只是获得x、y上偏移和。

uint32_t heuristic(uint32_t from_, uint32_t to_)
        {
            return this->distance(from_, to_);
        }

TODO:

  1. astar_t 应该模板化, heuristic、distance、get_neighbors都应该是可定制的
  2. 性能参数测试,如1000*1000地图上最坏情况的搜索开销
  3. open表更新还可以优化,当更新g值后若小于迭代器前一个节点,才需要执行删除再插入

源代码: http://ffown.googlecode.com/svn/trunk/fflib/ext/algorithm/astar2/

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数说工作室

统计师的Python日记【第5天:Pandas,露两手】

本文是【统计师的Python日记】第5天的日记 回顾一下: 第1天学习了Python的基本页面、操作,以及几种主要的容器类型; 第2天学习了python的函数、...

4067
来自专栏人工智能LeadAI

第一章 | 使用python机器学习

python经常作为机器学习的首选,有一个统计,50%以上的机器学习开发者使用python。在学习机器学习之前需要熟悉以下几个python模块: numpy P...

3705
来自专栏聊聊技术

原 初学算法-分治法求平面上最近点对(Cl

42115
来自专栏AILearning

【机器学习实战】第11章 使用 Apriori 算法进行关联分析

第 11 章 使用 Apriori 算法进行关联分析 ? 关联分析 关联分析是一种在大规模数据集中寻找有趣关系的任务。 这些关系可以有两种形式: 频繁项集(...

2486
来自专栏数据结构与算法

P1719 最大加权矩形

为了更好的备战NOIP2013,电脑组的几个女孩子LYQ,ZSC,ZHQ认为,我们不光需要机房,我们还需要运动,于是就决定找校长申请一块电脑组的课余运动场地,听...

38213
来自专栏沈唁志

PHP使用递归算法查找子集获取无限极分类等实操

递归函数是我们常用到的一类函数,最基本的特点是在函数或子过程的内部,直接或者间接地调用自己的算法,但必须在调用自身前有条件判断,否则无限调用下去,也就是所谓的死...

813
来自专栏tkokof 的技术,小趣及杂念

你真的了解模运算吗?

假设我们需要编写一个字母表右移映射的程序(可能用于实现某种加密算法),说起来似乎有些抽象,举个例子便清晰了:

462
来自专栏Python小屋

Python版组合数计算方法优化思路和源码

总体说明:本文的优化思路并不局限于Python,但C、C++、C#、Java等语言无法使用内置类型直接表示大整数,需要通过数组等特定形式并自己实现大整数乘除法才...

3165
来自专栏数据结构与算法

2017.7.21夏令营清北学堂解题报告

预计分数: 60+30+0=90=划水 实际分数: 90+30+20=140=rank5=雷蛇鼠标 一句话总结:今天该买彩票! T1: 题目描述 从前有一个?...

2606
来自专栏数据结构与算法

1010 过河卒

1010 过河卒 2002年NOIP全国联赛普及组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果...

2655

扫描关注云+社区