朴素贝叶斯的学习与分类

概念简介:

朴素贝叶斯基于贝叶斯定理,它假设输入随机变量的特征值是条件独立的,故称之为“朴素”。简单介绍贝叶斯定理:

乍看起来似乎是要求一个概率,还要先得到额外三个概率,有用么?其实这个简单的公式非常贴切人类推理的逻辑,即通过可以观测的数据,推测不可观测的数据。举个例子,也许你在办公室内不知道外面天气是晴天雨天,但是你观测到有同事带了雨伞,那么可以推断外面八成在下雨。

若X 是要输入的随机变量,则Y 是要输出的目标类别。对X 进行分类,即使求的使P(Y|X) 最大的Y值。若X 为n 维特征变量 X = {A1, A2, …..An} ,若输出类别集合为Y = {C1, C2, …. Cm} 。

X 所属最有可能类别 y = argmax P(Y|X), 进行如下推导:

朴素贝叶斯的学习

有公式可知,欲求分类结果,须知如下变量:

  • 各个类别的条件概率,
  • 输入随机变量的特质值的条件概率

示例代码:

import copy

class native_bayes_t:
    
    def __init__(self, character_vec_, class_vec_):
        """
        构造的时候需要传入特征向量的值,以数组方式传入
        参数1 character_vec_ 格式为 [("character_name",["","",""])]
        参数2 为包含所有类别的数组 格式为["class_X", "class_Y"]
        """
        self.class_set = {}
        # 记录该类别下各个特征值的条件概率
        character_condition_per = {}
        for character_name in character_vec_:
            character_condition_per[character_name[0]] = {}
            for character_value in character_name[1]:
                character_condition_per[character_name[0]][character_value] = {
                    'num'           : 0,  # 记录该类别下该特征值在训练样本中的数量,
                    'condition_per' : 0.0 # 记录该类别下各个特征值的条件概率
                }
        for class_name in class_vec:
            self.class_set[class_name] = {
                'num'                     : 0,  # 记录该类别在训练样本中的数量,
                'class_per'               : 0.0, # 记录该类别在训练样本中的先验概率,
                'character_condition_per' : copy.deepcopy(character_condition_per),
            }

        #print("init", character_vec_, self.class_set) #for debug

    def learn(self, sample_):
        """
        learn 参数为训练的样本,格式为
        [
            {
                'character'  : {'character_A':'A1'}, #特征向量
                'class_name' : 'class_X'             #类别名称
            }
        ]
        """
        for each_sample in sample:
            character_vec  = each_sample['character']
            class_name     = each_sample['class_name']

            data_for_class = self.class_set[class_name]
            data_for_class['num'] += 1

            # 各个特质值数量加1
            for character_name in character_vec:
                character_value = character_vec[character_name]
                data_for_character = data_for_class['character_condition_per'][character_name][character_value]

                data_for_character['num'] += 1

        # 数量计算完毕, 计算最终的概率值
        sample_num = len(sample)
        for each_sample in sample:
            character_vec = each_sample['character']
            class_name    = each_sample['class_name']

            data_for_class = self.class_set[class_name]
            # 计算类别的先验概率
            data_for_class['class_per'] = float(data_for_class['num']) / sample_num

            # 各个特质值的条件概率
            for character_name in character_vec:
                character_value = character_vec[character_name]
                
                data_for_character = data_for_class['character_condition_per'][character_name][character_value]

                data_for_character['condition_per'] = float(data_for_character['num']) / data_for_class['num']

        from pprint import pprint
        pprint(self.class_set)  #for debug

    def classify(self, input_):
        """
            对输入进行分类,输入input的格式为
        {
            "character_A":"A1",
            "character_B":"B3",
        }
        """
        best_class = ''
        max_per    = 0.0
        for class_name in self.class_set:
            class_data = self.class_set[class_name]
            per = class_data['class_per']
            # 计算各个特征值条件概率的乘积
            for character_name in input_:
                character_per_data = class_data['character_condition_per'][character_name]
                per = per * character_per_data[input_[character_name]]['condition_per']
            print(class_name, per)
            if per >= max_per:
                best_class = class_name

        return best_class

character_vec = [("character_A",["A1","A2","A3"]), ("character_B",["B1","B2","B3"])]
class_vec     = ["class_X", "class_Y"]
bayes = native_bayes_t(character_vec, class_vec)


sample = [
            {
                'character'  : {'character_A':'A1', 'character_B':'B1'}, #特征向量
                'class_name' : 'class_X'             #类别名称
            },
            {
                'character'  : {'character_A':'A3', 'character_B':'B1'}, #特征向量
                'class_name' : 'class_X'             #类别名称
            },
            {
                'character'  : {'character_A':'A3', 'character_B':'B3'}, #特征向量
                'class_name' : 'class_X'             #类别名称
            },
            {
                'character'  : {'character_A':'A2', 'character_B':'B2'}, #特征向量
                'class_name' : 'class_X'             #类别名称
            },
            {
                'character'  : {'character_A':'A2', 'character_B':'B2'}, #特征向量
                'class_name' : 'class_Y'             #类别名称
            },
            {
                'character'  : {'character_A':'A3', 'character_B':'B1'}, #特征向量
                'class_name' : 'class_Y'             #类别名称
            },
            {
                'character'  : {'character_A':'A1', 'character_B':'B3'}, #特征向量
                'class_name' : 'class_Y'             #类别名称
            },
            {
                'character'  : {'character_A':'A1', 'character_B':'B3'}, #特征向量
                'class_name' : 'class_Y'             #类别名称
            },
            
        ]

input_data ={
    "character_A":"A1",
    "character_B":"B3",
}

bayes.learn(sample)
print(bayes.classify(input_data))

总结:

l 朴素贝叶斯分类实现简单,预测的效率较高

l 朴素贝叶斯成立的假设是个特征向量各个属性条件独立,建模的时候需要特别注意

示例代码:

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Java Edge

AbstractList源码解析1 实现的方法2 两种内部迭代器3 两种内部类3 SubList 源码分析4 RandomAccessSubList 源码:AbstractList 作为 Lis

它实现了 List 的一些位置相关操作(比如 get,set,add,remove),是第一个实现随机访问方法的集合类,但不支持添加和替换

462
来自专栏聊聊技术

原 初学图论-Kahn拓扑排序算法(Kah

2878
来自专栏alexqdjay

HashMap 多线程下死循环分析及JDK8修复

1K4
来自专栏xingoo, 一个梦想做发明家的程序员

Spark踩坑——java.lang.AbstractMethodError

百度了一下说是版本不一致导致的。于是重新检查各个jar包,发现spark-sql-kafka的版本是2.2,而spark的版本是2.3,修改spark-sql-...

1200
来自专栏学海无涯

Android开发之奇怪的Fragment

说起Android中的Fragment,在使用的时候稍加注意,就会发现存在以下两种: v4包中的兼容Fragment,android.support.v4.ap...

3165
来自专栏开发与安全

算法:AOV网(Activity on Vextex Network)与拓扑排序

在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,这样的有向图为顶点表示活动的网,我们称之为AOV网(Activity on Vextex ...

2537
来自专栏刘君君

JDK8的HashMap源码学习笔记

3048
来自专栏项勇

笔记68 | 切换fragmengt的replace和add方法笔记

1444
来自专栏后端之路

LinkedList源码解读

List中除了ArrayList我们最常用的就是LinkedList了。 LInkedList与ArrayList的最大区别在于元素的插入效率和随机访问效率 ...

19710
来自专栏拭心的安卓进阶之路

Java 集合深入理解(6):AbstractList

今天心情比天蓝,来学学 AbstractList 吧! ? 什么是 AbstractList ? AbstractList 继承自 AbstractCollec...

19210

扫码关注云+社区