朴素贝叶斯的学习与分类

概念简介:

朴素贝叶斯基于贝叶斯定理,它假设输入随机变量的特征值是条件独立的,故称之为“朴素”。简单介绍贝叶斯定理:

乍看起来似乎是要求一个概率,还要先得到额外三个概率,有用么?其实这个简单的公式非常贴切人类推理的逻辑,即通过可以观测的数据,推测不可观测的数据。举个例子,也许你在办公室内不知道外面天气是晴天雨天,但是你观测到有同事带了雨伞,那么可以推断外面八成在下雨。

若X 是要输入的随机变量,则Y 是要输出的目标类别。对X 进行分类,即使求的使P(Y|X) 最大的Y值。若X 为n 维特征变量 X = {A1, A2, …..An} ,若输出类别集合为Y = {C1, C2, …. Cm} 。

X 所属最有可能类别 y = argmax P(Y|X), 进行如下推导:

朴素贝叶斯的学习

有公式可知,欲求分类结果,须知如下变量:

  • 各个类别的条件概率,
  • 输入随机变量的特质值的条件概率

示例代码:

import copy

class native_bayes_t:
    
    def __init__(self, character_vec_, class_vec_):
        """
        构造的时候需要传入特征向量的值,以数组方式传入
        参数1 character_vec_ 格式为 [("character_name",["","",""])]
        参数2 为包含所有类别的数组 格式为["class_X", "class_Y"]
        """
        self.class_set = {}
        # 记录该类别下各个特征值的条件概率
        character_condition_per = {}
        for character_name in character_vec_:
            character_condition_per[character_name[0]] = {}
            for character_value in character_name[1]:
                character_condition_per[character_name[0]][character_value] = {
                    'num'           : 0,  # 记录该类别下该特征值在训练样本中的数量,
                    'condition_per' : 0.0 # 记录该类别下各个特征值的条件概率
                }
        for class_name in class_vec:
            self.class_set[class_name] = {
                'num'                     : 0,  # 记录该类别在训练样本中的数量,
                'class_per'               : 0.0, # 记录该类别在训练样本中的先验概率,
                'character_condition_per' : copy.deepcopy(character_condition_per),
            }

        #print("init", character_vec_, self.class_set) #for debug

    def learn(self, sample_):
        """
        learn 参数为训练的样本,格式为
        [
            {
                'character'  : {'character_A':'A1'}, #特征向量
                'class_name' : 'class_X'             #类别名称
            }
        ]
        """
        for each_sample in sample:
            character_vec  = each_sample['character']
            class_name     = each_sample['class_name']

            data_for_class = self.class_set[class_name]
            data_for_class['num'] += 1

            # 各个特质值数量加1
            for character_name in character_vec:
                character_value = character_vec[character_name]
                data_for_character = data_for_class['character_condition_per'][character_name][character_value]

                data_for_character['num'] += 1

        # 数量计算完毕, 计算最终的概率值
        sample_num = len(sample)
        for each_sample in sample:
            character_vec = each_sample['character']
            class_name    = each_sample['class_name']

            data_for_class = self.class_set[class_name]
            # 计算类别的先验概率
            data_for_class['class_per'] = float(data_for_class['num']) / sample_num

            # 各个特质值的条件概率
            for character_name in character_vec:
                character_value = character_vec[character_name]
                
                data_for_character = data_for_class['character_condition_per'][character_name][character_value]

                data_for_character['condition_per'] = float(data_for_character['num']) / data_for_class['num']

        from pprint import pprint
        pprint(self.class_set)  #for debug

    def classify(self, input_):
        """
            对输入进行分类,输入input的格式为
        {
            "character_A":"A1",
            "character_B":"B3",
        }
        """
        best_class = ''
        max_per    = 0.0
        for class_name in self.class_set:
            class_data = self.class_set[class_name]
            per = class_data['class_per']
            # 计算各个特征值条件概率的乘积
            for character_name in input_:
                character_per_data = class_data['character_condition_per'][character_name]
                per = per * character_per_data[input_[character_name]]['condition_per']
            print(class_name, per)
            if per >= max_per:
                best_class = class_name

        return best_class

character_vec = [("character_A",["A1","A2","A3"]), ("character_B",["B1","B2","B3"])]
class_vec     = ["class_X", "class_Y"]
bayes = native_bayes_t(character_vec, class_vec)


sample = [
            {
                'character'  : {'character_A':'A1', 'character_B':'B1'}, #特征向量
                'class_name' : 'class_X'             #类别名称
            },
            {
                'character'  : {'character_A':'A3', 'character_B':'B1'}, #特征向量
                'class_name' : 'class_X'             #类别名称
            },
            {
                'character'  : {'character_A':'A3', 'character_B':'B3'}, #特征向量
                'class_name' : 'class_X'             #类别名称
            },
            {
                'character'  : {'character_A':'A2', 'character_B':'B2'}, #特征向量
                'class_name' : 'class_X'             #类别名称
            },
            {
                'character'  : {'character_A':'A2', 'character_B':'B2'}, #特征向量
                'class_name' : 'class_Y'             #类别名称
            },
            {
                'character'  : {'character_A':'A3', 'character_B':'B1'}, #特征向量
                'class_name' : 'class_Y'             #类别名称
            },
            {
                'character'  : {'character_A':'A1', 'character_B':'B3'}, #特征向量
                'class_name' : 'class_Y'             #类别名称
            },
            {
                'character'  : {'character_A':'A1', 'character_B':'B3'}, #特征向量
                'class_name' : 'class_Y'             #类别名称
            },
            
        ]

input_data ={
    "character_A":"A1",
    "character_B":"B3",
}

bayes.learn(sample)
print(bayes.classify(input_data))

总结:

l 朴素贝叶斯分类实现简单,预测的效率较高

l 朴素贝叶斯成立的假设是个特征向量各个属性条件独立,建模的时候需要特别注意

示例代码:

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能

机器学习笔记

基本术语 数据集(data set): 一组数据的集合 样本/示例(instance/sample):数据集中的一个事件或对象 属性/特征(attribute/...

1699
来自专栏UAI人工智能

深度学习入门第四讲

15511
来自专栏人工智能

深度学习 selectivesearch算法理解

采用selectivesearch算法产生的region proposal Object Detection,即物体检测,是计算机视觉领域中的经典任务之一。给定...

1935
来自专栏深度学习与计算机视觉

Logistic回归损失函数证明

在理解Logistic回归算法原理中我们指出了Logistic回归的损失函数定义(在这里重新约定符号): [图片] ? 而对于全体样本集的成本函数,就可以...

2396
来自专栏机器学习原理

机器学习(4)——逻辑回归Logistic回归softmax回归

前言:这里是分类问题,之所以放到线性回归的下面介绍,是因为逻辑回归的步骤几乎是和前面一样的,写出目标函数,找到损失函数,求最小值,求解参数,建立模型,模型评估。...

3408
来自专栏xingoo, 一个梦想做发明家的程序员

Spark机器学习——模型选择与参数调优之交叉验证

spark 模型选择与超参调优 机器学习可以简单的归纳为 通过数据训练y = f(x) 的过程,因此定义完训练模型之后,就需要考虑如何选择最终我们认为最优的模...

3816
来自专栏人工智能

深入机器学习系列12-高斯混合模型

高斯混合模型   现有的高斯模型有单高斯模型()和高斯混合模型()两种。从几何上讲,单高斯分布模型在二维空间上近似于椭圆,在三维空间上近似于椭球。在很多情况下,...

2119
来自专栏量子位

一文了解各种卷积结构原理及优劣

王小新 编译自 Medium 量子位 出品 | 公众号 QbitAI 卷积神经网络作为深度学习的典型网络,在图像处理和计算机视觉等多个领域都取得了很好的效果。 ...

3436
来自专栏郭耀华‘s Blog

各种卷积结构原理及优劣总结

卷积神经网络作为深度学习的典型网络,在图像处理和计算机视觉等多个领域都取得了很好的效果。

451
来自专栏深度学习之tensorflow实战篇

R语言 判别分析

#判别分析 用以判别个体所属群体的一种统计方法 判别分析重点是两类群体的判别方法 #主要判别分析方法 有距离判别 贝叶斯判别 费歇判别法 1、关键点: #贝叶斯...

2605

扫描关注云+社区