前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >隐马尔科夫-维特比算法

隐马尔科夫-维特比算法

作者头像
知然
发布2018-03-09 16:43:26
5580
发布2018-03-09 16:43:26
举报
文章被收录于专栏:H2CloudH2Cloud

概念介绍:

  继上篇贝叶斯(https://cloud.tencent.com/developer/article/1056640)后,一直想完成隐马尔科夫这篇,一是一直没有时间完成python的示例实现代码,二是想找一个区别于天气的隐马尔科夫例子。区别于贝叶斯,隐马尔科夫模型是基于时序的概率模型,本文只关注于一阶隐马尔科夫模型,即某一时刻的状态值只跟上一时刻的状态值有关。该模型可以用三元组表示:λ = (A, B,π ), 其中:

  • A:为状态转移概率矩阵
  • B:为观察概率矩阵,或称为概率矩阵
  • π:为初始概率矩阵 

举一个例子来说明。

  • 假设有一只电动玩具狗,它只会干三件事:汪汪叫(W),跑来跑去(R),睡觉(S)。则观察状态集合V为{W, R, S}, 则观察状态数目M=3 .
  • 经过了解得知,电动玩具狗是受情绪控制的,它会无聊(B),高兴(H),生气(A),故状态集合Q={B, H,A}, 状态数目N=3
  • 分析这只玩具狗后得知其状态转移概率矩阵为:
  • 混淆矩阵为:
  • 初始概率矩阵为:π = (0.2, 0.4, 0.4)

维特比算法

  假设一天中观察到玩具狗的行为序列为{W,R,S,R,S}, 求最可能的情绪状态序列是什么。这是典型的隐马尔科夫解码问题,下面使用维特比算法求解。

  •  维特比变量

 : 使t时刻为状态i的最佳状态序列的概率值,递推公式:

  •  辅助变量  

 表示t时刻为状态i时的前一时刻t-1时的最佳状态,注意, 

为t时刻为i的最佳的概率,而

为最佳状态值,由此也可知

 记录了到达此点的最佳上一个时刻的状态点路径,故分配T*N数组存储,用于最后回溯路径得到最终结果,动态规划的思想。

Python 实现代码:

代码语言:javascript
复制
class yieldmrkf_t:
    def __init__(self, A, B, Pi, OSet, QSet):
        self.A  = A # 转移概率矩阵
        self.B  = B # 混淆概率矩阵
        self.Pi = Pi # 初始概率矩阵
        self.N  = len(Pi) # 隐状态数量
        self.M  = len(B) / self.N # 观察状态数量
        self.OsetVal = OSet
        self.QSetVal = QSet
        self.QSet = []
        self.Oset = []
        for i in range(0, self.N):
            self.QSet.append(i)
        for i in range(0, self.M):
            self.Oset.append(i)
    def dump(self):
        strA = "A:"
        i = 0
        for k in self.A:
            if i % self.N == 0:
                strA = strA + "\n"
            strA = strA + " " + str(k)
            i = i + 1
        print(strA)
        i = 0
        strB = "B:"
        for k in self.B:
            if i % self.M == 0:
                strB = strB + "\n"
            strB = strB + " " + str(k)
            i = i + 1
        print(strB)
        print("Pi:", self.Pi, "N:", self.N, "M:", self.M)
    def get_a(self, i, j):
        return self.A[i*self.N + j]
    def get_b(self, o, i):
        return self.B[i*self.M + o]
    def get_delta(self, delta_set, t, i):
        return delta_set[t*self.N + i]
    def convertOState(self, OStateSet_Val):
        dest = []
        for k in OStateSet_Val:
            for i in range(0, self.M):
                if k == self.OsetVal[i]:
                    dest.append(i)
        return dest
    def decode(self, OStateSet_Val):
        OStateSet = self.convertOState(OStateSet_Val)
        T = len(OStateSet)
        # 初始化t= 1 的情况
        delta_set = []
        fai_set   = []
        for i in self.QSet:
            delta_1_i = self.Pi[i] * self.get_b(OStateSet[0], i)
            delta_set.append(delta_1_i)
            fai_set.append(0)
        # 递推求的delta 和fai
        for t in range(1, T):
            for i in self.QSet:
                fai_t_i   = 0
                tmp_fai_i = 0
                tmp_delta = 0
                for j in self.QSet:
                    #compute fai
                    tmp = self.get_delta(delta_set, t - 1, j) * self.get_a(j, i)
                    if tmp > tmp_fai_i:
                        tmp_fai_i = tmp
                        fai_t_i   = j
                    #compute delta
                    tmp = tmp * self.get_b(OStateSet[t], i)
                    if tmp > tmp_delta:
                        tmp_delta = tmp
                fai_set.append(fai_t_i)
                delta_set.append(tmp_delta)
        #select last i
        tmp_rate_i_T = 0
        i_T = 0
        for i in self.QSet:
            tmp = self.get_delta(delta_set, T-1, i)
            if tmp > tmp_rate_i_T:
                tmp_rate_i_T = tmp
                i_T = i
        i_dest = []
        i_dest.append(i_T)
        for tmp_t in range(1, T):
            t = T - tmp_t
            i_dest.append(fai_set[(t) * self.N + i_dest[len(i_dest) - 1]])

        dest = []
        for n in range(0, T):
            dest.append(self.QSetVal[i_dest[(T-n) - 1]])
        return dest

OSet = ['W', 'R', 'S']
QSet = ['B','H', 'A']
O    = ['W', 'R', 'S', 'R', 'S']
A  = [0.5, 0.2, 0.3, 0.3, 0.5, 0.2, 0.2, 0.3, 0.5]
B  = [0.5, 0.2, 0.3, 0.4, 0.1, 0.5, 0.7, 0.1, 0.2]
Pi = [0.2, 0.4, 0.4]
o = yieldmrkf_t(A, B, Pi, OSet, QSet)
o.dump()
dest = o.decode(O)
print("output:", dest

输出结果:

A: 0.5 0.2 0.3 0.3 0.5 0.2 0.2 0.3 0.5 B: 0.5 0.2 0.3 0.4 0.1 0.5 0.7 0.1 0.2 ('Pi:', [0.2, 0.4, 0.4], 'N:', 3, 'M:', 3) ('output:', ['A', 'H', 'H', 'H', 'H'])

总结

  • 隐马尔科夫适用于时序概率模型,“隐”的含义是既可观察的状态序列和隐藏(不可观察的)状态序列存在一定关系
  • 本文探究了隐马尔科夫的解码问题,分析实现了维特比算法
  • 隐马尔科夫的概率计算问题和模型参数学习问题待以后探究。
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2012-12-15 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 概念介绍:
  • Python 实现代码:
  • 输出结果:
  • 总结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档