业界丨Google 首席科学家 Vincent Vanhoucke:机器人和深度学习正在发生一些“有趣的融合”

Vincent Vanhoucke是Google的首席科学家,斯坦福大学电子工程学博士,目前在Google Brain主导机器人相关的项目。Vanhoucke主要的研究领域是语音识别、计算机视觉和机器人等领域,他还即将主持机器人领域的盛会CoRL 2017(Conference on Robot Learning)。

Vanhoucke认为,机器智能现在已经发展到一个相当的水准,在某些特定情境下的表现可以媲美(甚至超越)人类,比如机器视觉、机器翻译、语音识别,现在是时候让这些能力在物理世界中发挥效应了。他在今天的演讲中提到,robotics的研究现在也正面临着一场深度学习的革新,实现这一点,需要现在的机器学习从业者跳出监督学习的舒适区,面临一些棘手的问题:数据稀缺,如何使机器实现技能转换以及持续性的学习等等。Vanhoucke也提到,这也是人工智能从理论到实践的必经之路。

Vanhoucke分别介绍了他在图像、语音(及机器翻译)领域和机器人(主要是机械手抓取)的一些研究成果。AI 科技评论作了部分节选。

Vanhoucke说,2011年,语音识别研究者采用神经网络技术降低语音识别,错误率大幅降低,是语音识别领域十多年来最大的进步;2016年,几乎就已经达到人类水准了。

而机器翻译,2014年机器学习的引入也让机器翻译有了质的进步,但要说达到人类水准,还是比较勉强……

(看keynote上的名单,为Google的机器翻译做出贡献的,华人数量不少。)

这个柱状图是人类翻译、神经网络翻译和PBMT翻译的质量差别,依次递减。

Vanhoucke认为,机器学习研究比过去更容易了,有更多的开源工具和模型,更多的网络教程(他自己就在Udacity上开了网络课程),GPU和高性能计算硬件门槛也变低了,研究者也比以前更多。

图片识别领域,除了底层技术的完善,Google已经将图片识别技术应用在医疗领域,帮助医生诊断病情,并且获得了一些成效。

但他也说,图像识别现在远远没有到“success”的地步,有40%基于图像监测做的决策,结果是很糟糕的。

接下来是机器人的部分。Vanhoucke是电子工程专业出身,在Google Brain主要的工作是机器人项目。他先强调了一个和很多人认知有出入的观点:目前的机器人研究其实跟深度学习没有多大关系。

他做了个示范,让手里的笔掉在地上,说,如果机器人的任务是抓取笔的话,那么抓住了和抓不住,从外部观察不到机器人的动作有什么差别(因此不能从中得到什么规律)。

机器抓取特定的物体是有迹可循的;抓取未知的物体尚无法解决。越是少的图像识别技术介入,机器的鲁棒性就越好。

强化学习的引入对于机器人的研究可能有帮助。前提是先有一个能产生海量样本的参照模型。

最后的结论:

1、robotics和机器学习正在发生有意思的融合; 2、对于常规的robotics问题,要有做出不同答案的觉悟; 3、It hits all the right difficult problems on the road to practical AI。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-02-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

前沿 | 当 AI 掌握「读心术」:DeepMind AI 已经学会相互理解

有时候,我们会觉得 Siri 或 Alexa 等数字助理非常令人失望,因为它们根本不懂我们人类。它们需要懂点被心理学家称为「心智理论」(theory of mi...

631
来自专栏AI科技评论

吴恩达专访LeCun:即便在神经网络的寒冬,我也坚信它终会重回公众视野

时隔半年,终于等来了 Yann LeCun 回忆杀视频。 去年 8 月时,随着 deeplearning.ai 深度学习教学网站和系列课程的发布,吴恩达也在「t...

2595
来自专栏钱塘大数据

【推荐阅读】人工智能的原理,技术和未来

星期二早上8:00。你已经醒了,扫了一眼手机上的标题,回复了一个在线帖子,为你妈妈订购了一件假日毛衣,锁上屋子开车上班,路上听一些好听的曲子。 在这个过程中,...

3337
来自专栏新智元

【重磅】谷歌大脑官方年度报告:TensorFlow、机器学习、自然语言处理(27 篇顶会论文)

【新智元导读】谷歌大脑负责人 Jeff Dean 今天在谷歌博客刊文,从论文发表、TensorFlow 到推广机器学习,全面总结团队 2016 年的工作,并分享...

26510
来自专栏新智元

谷歌深度学习四大教训:应用、系统、数据及原理(附数据集列表)

【新智元导读】刚刚结束的伦敦深度学习峰会上,曾与吴恩达在 Google Brain 共事的谷歌高级研究员 Greg Corrado 分享了他对何时、何地、如何使...

42010
来自专栏新智元

【大师观】机器学习和人工智能:2016 重大进展和 2017 主要趋势

【新智元导读】“2016年机器学习及人工智能领域的最大亮点和 2017年的重要趋势是什么?”Kdnuggets 网站汇集了十几位专家的看法,AlphaGo 无疑...

3358
来自专栏新智元

实现无监督学习?谷歌雇百名语言学家为训练数据“镀金”

【新智元导读】自然语言处理大师 Fred Jelinek 有一句名言:“我每开除一名语言学家,我的语音识别系统错误率就降低一个百分点。”不过,在谷歌搜索 app...

33610
来自专栏新智元

【不在谷歌?没关系】不在大公司,如何做好深度学习

【新智元导读】不在大公司,没有大数据,如何做好深度学习?深度学习研究员 Bharath Ramsundar 看好低数据学习(low data learning)...

33112
来自专栏人工智能头条

专访 | 杨强教授谈CCAI、深度学习泡沫与人工智能入门

853
来自专栏钱塘大数据

【周末漫谈】人工智能的原理,技术和未来

? 星期二早上8:00。你已经醒了,扫了一眼手机上的标题,回复了一个在线帖子,为你妈妈订购了一件假日毛衣,锁上屋子开车上班,路上听一些好听的曲子。 在这个过...

3287

扫描关注云+社区