大数据的关键思考 -- 数据化营运三诀窍

当谈到阿里巴巴的数据化营运时,我第一个想到的就是「人」,我们花太多时间讨论我们应该要做什么,却很少会反过来想,如果要落实数据化营运首先要从人做起,因此想跟大家分享的祕密是,数据化营运的内功是什么呢?简单来说,就是利用好「混、通、晒(呈现)」这叁大诀窍。

「混」出数据

  现在很多数据分析师,在面对专业範围「怎么算回归」、「怎么画函数」的问题游刃有余,在实际工作中却缺乏商业意识。如果数据分析师缺乏商业意识,公司就成了「盲人」,分析师不知道该使用什么逻辑分析数据,而公司的决策层也得不到任何有价值的参考意见。现在绝大多数 CEO 都在抱怨,每天要看一大堆零零散散的数据。造成这种局面的塬因是,数据分析师只是单纯的把数据传递给管理者,却没有向管理者解释,这些呈现使用者行为的数据和能够在商业上产生价值的数据,两者间的内在关係。

CEO 没有多余精力解读页面浏览量(PV)和独立访客(UV)等数据。他们只需要知道数据是否有问题、反映了什么问题、最近有什么新的发现以及需要我们做出什么样的改变。简单来说,具有商业意识的数据分析师,在监测到网站上婴儿车销量增加的情况时,就可以预测到奶粉的销量也会随之上升。而且,也只有具备商业敏感的数据分析师,才懂得用什么数据驱动公司实现经营目标。

  数据分析师如何才能拥有商业敏感?要靠「混」。例如:我要求数据分析师在给我的週报裡,一定要讲到业务方的动态。而且,我给他们的考评标準是,千万不要让我看见业务方发过来的週报裡有的内容,你的週报裡没有。我认为,要实现这一要求最基础的出发点是,数据分析师一定要跟业务方沟通,才有可能服务于他们。

  打「通」混的数据

  当你与业务人员混得够熟时,在看到某些数据后,你自然就会明白,「喔,这个数据跟商业决策绝对有莫大的关係。」当前,各电商公司在评估公司经营状况时,愈来愈依赖数据。但是,在今天,很少有电商敢完全肯定的说,自己掌握了呈现公司状况较完整的数据。对于公司主管而言,一是因为很多电商在开始收集数据时,会发现数据非常散乱,分布在不同的数据收集管道和营运人员——公司的核心员工手裡,这就使得数据流程非常「堵」;另一个问题是,绝大多数电商缺乏大数据营运的经验,只是收集了很「散」的数据,却不知道如何利用,也不知道该让哪些数据关联起来。

  从客观角度来看,数据营运的各方面都可能存在影响数据精準度的「噪音」。数据本身是客观的,但它很容易受到产品和营运人员的影响——产品目的会影响营运人员的想法,营运人员的想法则会影响样本获取的精準度,造成数据在不同人眼中出现不同结果的情形。以转换率为例,市场部门和营运部门对转换率的想法并不相同,如果公司内部的数据标準没有打通、一致,公司决策时被数据迷惑和误导的可能性就会被放大。

  因此你会发现,问题最后还是要归结到人和公司。如果不能「通」到商业环境裡,即使数据很多也没有任何价值。坚持带着业务问题观察数据或者带着数据观察业务,兼备二者的敏感,就是做到了「通」。有些人在很短的时间裡就能判断出数据是否有价值,就是因为「混通」了。

  想做到数据的积累和沉淀,想要打通数据,建立合理的系统是不二之选。首先,做好数据安全工作,以保证公司内部不同职位的员工可以察看不同的数据;再者,统一不同部门的数据标準,使公司内部数据有统一的介面,避免混乱;最后,关联不同部门的数据,创造机会让数据的营运可以扩散至数据部门之外。「通」是「混、通、晒」裡最关键的连接点。以前,数据量没这么大的时候,公司「混」完就「晒」了,完全凭藉商业敏感营运数据。而现在海量数据成为主流,「通」也就成为了营运数据不可或缺的一部分。

 「晒」出混和通的数据

  「晒」(呈现)是一种在「混」和「通」基础上,产生出来的最终数据表现,是基于人、商业和数据结合后的一种看数据和用数据的方法论。在「晒」数据层面上,通常是透过数据回答这几个问题:业务好或不好,数据如何改变可以让业务更好,如何利用数据说明业务发现机会,甚至产生出新的商业价值。这些问题看起来是递进关係,其实不然,因为具体应该用数据解决什么问题,要根据业务的情境做决定。

(来源:中国大数据)

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2014-12-29

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据猿

金融科技&大数据产品推荐: 换汇API/海外支付API——让跨境支付更简单

官网 | www.datayuan.cn 微信公众号ID | datayuancn 本产品为数据猿推出的“金融科技价值—数据驱动金融商业裂变”大型主题策划活动第...

3349
来自专栏数据猿

包银消费金融总经理助理汤向军:消费金融行业的大数据

数据猿报道,2017年10月25日,由 数据猿 联合《清华金融评论》共同主办的“2017金融科技价值峰会——数据驱动金融商业裂变”在北京隆重召开。本文为数据猿现...

2616
来自专栏华章科技

互联网广告:大数据变现的颜值担当

互联网广告,也称在线广告、网络广告,顾名思义,指的是在线媒体上投放的广告,与传统广告不同,在线广告在其短短十几年的发展中,已经形成了以人群为投放目标,以产品为导...

571
来自专栏腾讯研究院的专栏

知识分享命运如何推演?需求,供给和三大险关|分享经济系列报告

 文/孙怡  陈丽月   2016年10月长假之前,分答返场,但是瘦身了,只剩下三类:职场、健康和科普内容。毋庸置疑,分答消失这47天里经历了什么。   回顾一...

1917
来自专栏大数据挖掘DT机器学习

【推荐】如何使你手里的数据变成现金?

最近数据挖掘与分析讨论比较热的话题是“数据变现”,也就是所谓的数据挖掘在业务中进行了应用,并确实给业务带来更大的业务绩效收益。很多朋友都知道,有技术、熟悉业务是...

2684
来自专栏大数据挖掘DT机器学习

大数据的关键思考 -- 数据化营运三诀窍

当谈到阿里巴巴的数据化营运时,我第一个想到的就是「人」,我们花太多时间讨论我们应该要做什么,却很少会反过来想,如果要落实数据化营运首先要从人做起,因此...

3049
来自专栏企鹅号快讯

为什么区块链会成为消除数字化营销障碍的解决方案

如果在几十年前,您上网搜索Prada包时恰巧在收件箱里收到了一个可以打八折的优惠券,那么您一定认为全世界都在帮您实现愿望。 当时,只有为数不多的零售商能够负担的...

1748
来自专栏大数据文摘

BAT介入教育O2O的背后是人工智能战略

1288
来自专栏大数据挖掘DT机器学习

互联网思维——如何运用数据分析搞定零售

互联网时代的信息化,我觉得首先要定一个基调,互联网时代的管理系统信息化应该如何利用新的技术手段为用户企业改善经营,开拓市场提供支持。首先来看互联网...

3214
来自专栏达观数据

双十一后,细数电商行业的黑科技

双十一刚刚过去,电商的从业者终于可以喘口气了。这个节日从九年前的光棍节演变成如今电商行业的狂欢节。早几年双十一刚流行的时候,零点订单过多造成网络瘫痪、到了支付环...

34815

扫描关注云+社区