大数据的关键思考 -- 数据化营运三诀窍

当谈到阿里巴巴的数据化营运时,我第一个想到的就是「人」,我们花太多时间讨论我们应该要做什么,却很少会反过来想,如果要落实数据化营运首先要从人做起,因此想跟大家分享的祕密是,数据化营运的内功是什么呢?简单来说,就是利用好「混、通、晒(呈现)」这叁大诀窍。

「混」出数据

  现在很多数据分析师,在面对专业範围「怎么算回归」、「怎么画函数」的问题游刃有余,在实际工作中却缺乏商业意识。如果数据分析师缺乏商业意识,公司就成了「盲人」,分析师不知道该使用什么逻辑分析数据,而公司的决策层也得不到任何有价值的参考意见。现在绝大多数 CEO 都在抱怨,每天要看一大堆零零散散的数据。造成这种局面的塬因是,数据分析师只是单纯的把数据传递给管理者,却没有向管理者解释,这些呈现使用者行为的数据和能够在商业上产生价值的数据,两者间的内在关係。

CEO 没有多余精力解读页面浏览量(PV)和独立访客(UV)等数据。他们只需要知道数据是否有问题、反映了什么问题、最近有什么新的发现以及需要我们做出什么样的改变。简单来说,具有商业意识的数据分析师,在监测到网站上婴儿车销量增加的情况时,就可以预测到奶粉的销量也会随之上升。而且,也只有具备商业敏感的数据分析师,才懂得用什么数据驱动公司实现经营目标。

  数据分析师如何才能拥有商业敏感?要靠「混」。例如:我要求数据分析师在给我的週报裡,一定要讲到业务方的动态。而且,我给他们的考评标準是,千万不要让我看见业务方发过来的週报裡有的内容,你的週报裡没有。我认为,要实现这一要求最基础的出发点是,数据分析师一定要跟业务方沟通,才有可能服务于他们。

  打「通」混的数据

  当你与业务人员混得够熟时,在看到某些数据后,你自然就会明白,「喔,这个数据跟商业决策绝对有莫大的关係。」当前,各电商公司在评估公司经营状况时,愈来愈依赖数据。但是,在今天,很少有电商敢完全肯定的说,自己掌握了呈现公司状况较完整的数据。对于公司主管而言,一是因为很多电商在开始收集数据时,会发现数据非常散乱,分布在不同的数据收集管道和营运人员——公司的核心员工手裡,这就使得数据流程非常「堵」;另一个问题是,绝大多数电商缺乏大数据营运的经验,只是收集了很「散」的数据,却不知道如何利用,也不知道该让哪些数据关联起来。

  从客观角度来看,数据营运的各方面都可能存在影响数据精準度的「噪音」。数据本身是客观的,但它很容易受到产品和营运人员的影响——产品目的会影响营运人员的想法,营运人员的想法则会影响样本获取的精準度,造成数据在不同人眼中出现不同结果的情形。以转换率为例,市场部门和营运部门对转换率的想法并不相同,如果公司内部的数据标準没有打通、一致,公司决策时被数据迷惑和误导的可能性就会被放大。

  因此你会发现,问题最后还是要归结到人和公司。如果不能「通」到商业环境裡,即使数据很多也没有任何价值。坚持带着业务问题观察数据或者带着数据观察业务,兼备二者的敏感,就是做到了「通」。有些人在很短的时间裡就能判断出数据是否有价值,就是因为「混通」了。

  想做到数据的积累和沉淀,想要打通数据,建立合理的系统是不二之选。首先,做好数据安全工作,以保证公司内部不同职位的员工可以察看不同的数据;再者,统一不同部门的数据标準,使公司内部数据有统一的介面,避免混乱;最后,关联不同部门的数据,创造机会让数据的营运可以扩散至数据部门之外。「通」是「混、通、晒」裡最关键的连接点。以前,数据量没这么大的时候,公司「混」完就「晒」了,完全凭藉商业敏感营运数据。而现在海量数据成为主流,「通」也就成为了营运数据不可或缺的一部分。

 「晒」出混和通的数据

  「晒」(呈现)是一种在「混」和「通」基础上,产生出来的最终数据表现,是基于人、商业和数据结合后的一种看数据和用数据的方法论。在「晒」数据层面上,通常是透过数据回答这几个问题:业务好或不好,数据如何改变可以让业务更好,如何利用数据说明业务发现机会,甚至产生出新的商业价值。这些问题看起来是递进关係,其实不然,因为具体应该用数据解决什么问题,要根据业务的情境做决定。

(来源:中国大数据)

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2014-12-29

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据科学与人工智能

人工智能兴起 这六种工作需求增长

人工智能兴起,您的工作会受到影响吗?您需要提前准备和改变吗? 虽然人们担心人工智能(AI)自动化将导致全球各行业大幅裁员,但技术进步也将带来大量新的就业机会和服...

1995
来自专栏ThoughtWorks

敏捷实践中的利益相关者管理 | TW洞见

今日洞见 文章作者/图片来自ThoughtWorks:杜雅斐。 本文所有内容,包括文字、图片和音视频资料,版权均属ThoughtWorks公司所有,任何媒体、网...

3758
来自专栏高端访谈

对话视觉中国创意社区总裁王钧:AI+云 释放创意潜力

“四年前,视觉中国创意社区开始意识到云计算的重要性。因为很多新入创意行业的人都可以自己独立完成全流程创作,也让个人供稿人(摄影师、插画师、字体设计师等专业的内容...

1444
来自专栏人工智能头条

去年挤不进去的推荐系统论坛又来了! | BDTC 2017

1673
来自专栏华章科技

名人堂 | 张涵诚:大数据的最大价值: 大数据+物体=智能

人与物体,是地球的两大类,人是地球上最高级的动物,物体(动物,植物,生物,微生物,人造物体)不能制造,人拥有智慧,人主宰了这个地球。

672
来自专栏京东技术

全球首个运筹优化挑战赛冠军产生 京东献出顶级挑战引发供应链创新突破

历时四个月,由京东主办的全球首个聚焦于智能物流、智能供应链两大无界零售基础设施的顶级运筹优化赛事圆满落幕。顶级的挑战吸引了顶级的人才,最终在「城市物流运输车智能...

563
来自专栏腾讯大数据的专栏

大数据赋能,如何精细化运营?

3月18日,腾讯大数据举办了2018年线下沙龙—深圳站,吸引了深圳互联网圈众多运营&推广的小伙伴踊跃报名参加活动,共同探讨主题:互联网用户增长与运营之道。 信息...

3356
来自专栏前沿科技

中兴视觉大数据转载:人工智能来了,你会下岗吗?

在人工智能成为热门话题的今天,许多人也开始忧心自己未来是否会被机器人所取代,更有极端的例子,认为未来社会只有机器人需要劳动,便早早放弃工作,一心等待着那...

42811
来自专栏钱塘大数据

院士桂卫华:智能优化制造是转型升级必由之路

中国工程院院士桂卫华详细介绍了在新的工业革命到来前,各国针对智能制造制定的战略对策,并表示我国流程工业的转型升级还要结合我国的特点与现状,提出了智能优化制造才是...

32715
来自专栏大数据文摘

普华永道:2015消费金融白皮书(下载)

2219

扫码关注云+社区