如何通过自学,成为数据挖掘“高手”?

问题:

求教各位对数据挖掘有一定了解的达人,如何从“零”开始学习数据挖掘?需要掌握哪些基本的技能?(比如是不是一定要会用R进行简单编程、掌握哪些基本的数学知识等)

喜欢数学,本科有最基本的数学基础(数学分析、线代、概率论与统计、数论…),本身对数据挖掘很有兴趣,如果掌握了,对现在的工作也会很有帮助,所以下决心来从头学起。

tips1:

只是过来人,说点看法:

基础篇:

1. 读书《Introduction to Data Mining》,这本书很浅显易懂,没有复杂高深的公式,很合适入门的人。另外可以用这本书做参考《Data Mining : Concepts and Techniques》。第二本比较厚,也多了一些数据仓库方面的知识。如果对算法比较喜欢,可以再阅读《Introduction to Machine Learning》。

2. 实现经典算法。有几个部分:

a. 关联规则挖掘 (Apriori, FPTree, etc.)

b. 分类 (C4.5, KNN, Logistic Regression, SVM, etc.)

c. 聚类 (Kmeans, DBScan, Spectral Clustering, etc.)

d. 降维 (PCA, LDA, etc.)

e. 推荐系统 (基于内容的推荐,协同过滤,如矩阵分解等)

然后在公开数据集上测试,看实现的效果。可以在下面的网站找到大量的公开数据集:http://archive.ics.uci.edu/ml/

3. 熟悉几个开源的工具: Weka (用于上手); LibSVM, scikit-learn, Shogun

4. 到 https://www.kaggle.com/ 上参加几个101的比赛,学会如何将一个问题抽象成模型,并从原始数据中构建有效的特征 (Feature Engineering).

到这一步的话基本几个国内的大公司都会给你面试的机会。

进阶篇:

1. 读书,下面几部都是大部头,但学完进步非常大。

a.《Pattern Recognition and Machine Learning》

b.《The Elements of Statistical Learning》

c.《Machine Learning: A Probabilistic Perspective》

第一本比较偏Bayesian;第二本比较偏Frequentist;第三本在两者之间,但我觉得跟第一本差不多,不过加了不少新内容。当然除了这几本大而全的,还有很多介绍不同领域的书,例如《Boosting Foundations and Algorithms》,《Probabilistic Graphical Models Principles and Techniques》;以及理论一些的《Foundations of Machine Learning》,《Optimization for Machine Learning》等等。这些书的课后习题也非常有用,做了才会在自己写Paper的时候推公式。

2. 读论文。包括几个相关会议:KDD,ICML,NIPS,IJCAI,AAAI,WWW,SIGIR,ICDM;以及几个相关的期刊:TKDD,TKDE,JMLR,PAMI等。跟踪新技术跟新的热点问题。当然,如果做相关research,这一步是必须的。例如我们组的风格就是上半年读Paper,暑假找问题,秋天做实验,春节左右写/投论文。

3. 跟踪热点问题。例如最近几年的Recommendation System,Social Network,Behavior Targeting等等,很多公司的业务都会涉及这些方面。以及一些热点技术,例如现在很火的Deep Learning。

4. 学习大规模并行计算的技术,例如MapReduce、MPI,GPU Computing。基本每个大公司都会用到这些技术,因为现实的数据量非常大,基本都是在计算集群上实现的。

5. 参加实际的数据挖掘的竞赛,例如KDDCUP,或 https://www.kaggle.com/ 上面的竞赛。这个过程会训练你如何在一个短的时间内解决一个实际的问题,并熟悉整个数据挖掘项目的全过程。

6. 参与一个开源项目,如上面提到的Shogun或scikit-learn还有Apache的Mahout,或为一些流行算法提供更加有效快速的实现,例如实现一个Map/Reduce平台下的SVM。这也是锻炼Coding的能力。

到这一步国内的大公司基本是想哪去哪,而且待遇也不差;如果英语好,去US那边的公司难度也不大了。

tips2:

先申明,以下为个人看法。

数据挖掘这个东西,要看你追求的是什么?

注意到你是想自学?那一帮情况下,就可以理解为不是奔科研去的,看起来应该是追求实用。

那么作为一个带了N年数据分析团队,算是有点经验的人,建议你找点实际的项目去做。

首先是要弄明白你想挖点什么出来?如果你说不知道,抱歉,你可能还是在追科研的路。

实际的项目中:

首先就是要明确你希望挖的东西能产生什么业务价值,而非用什么挖掘算法,那是手段,可以在后面再关注;要能够具体描绘你的挖掘目标、价值,以及挖掘成果的预期展现形式,说服力如何,等等;

其次,和相关的小伙伴讨论,为了挖出你想要的成果,需要利用到哪些数据?这些数据中,哪些是已经有的,哪些还得想办法去收集?其中是否有些数据根本是不可能收集到的?这些收集不到的数据对于你想挖的成果会有什么影响?如果是致命影响,直接导致你的挖掘成果缺乏说服力,那就此歇菜,另找其他方向吧。反之,则安排计划和资源,把能收集到的数据尽快收集起来;

再次,根据收集到的数据的特点和收集过程的质量情况,清洗收集到的数据;

根据挖掘目标的情况和收集到的数据的特点,制定挖掘规划,选择合适的挖掘算法;

然后,就开始挖吧;

第一轮挖完,看看成果如何?有道理吗?有说服力吗?大多数情况,你会发现,哦,晕,忘了应该把这几个因素考虑进去了,还应该加进去这几方面的数据才能看出来。好,继续转向第2步,继续收集数据、清洗、调算法/参数,挖出来后再评估,一般情况得这么循环N个回合;

马马虎虎出来个差不多靠谱、勉强能自圆其说的初胚,这个成果看上去像那么回事儿了。

总结一个说法(分析成果)出来,为了你的说法,把数据再针对性地洗上几遍,给出一个更加干净的分析成果,这个版本基本上有说服力了。

讲究一点的,再画个信息图什么的,图文并茂,就可以初步交作业了;

在真实的项目中,还有一步,就是选取重要的评估视角和指标,根据具体的业务特点,把你的分析过程做成每周/每日/每小时都能给个角度固定的分析报告的服务。

再往前一步,如果你对这块业务真的很熟的话,还可以针对不同类型的分析结果,能给出相应的建议应对措施(Action),这样这此挖掘的业务价值就真正明确了。你做的活儿也没有停留在“活儿”这个份儿上,而是决策支持这个级别上了。

(Via:果壳问答)

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2015-04-12

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据文摘

能否打开人工智能的“黑箱”?

1403
来自专栏大数据文摘

学界 | 马里兰大学研究:人脑神经网络的动态变化和声音感知

1443
来自专栏AI科技评论

哈工大秦兵:机器智能中的文本情感计算 | CCF-GAIR 2018

AI 科技评论按:2018 全球人工智能与机器人峰会(CCF-GAIR)在深圳召开,峰会由中国计算机学会(CCF)主办,雷锋网、香港中文大学(深圳)承办,得到了...

942
来自专栏PPV课数据科学社区

CCAI 2017 | 自然语言处理的十个发展趋势

近日,由中国人工智能学会、阿里巴巴集团 & 蚂蚁金服主办,CSDN、中国科学院自动化研究所承办的第三届中国人工智能大会(CCAI 2017)在杭州国际会议中心盛...

2455
来自专栏新智元

【深度】AI 入侵翻译,神经机器翻译进化让巴别塔7年内成真

【新智元导读】 随着AlphaGo战胜柯洁,AI 所激起的惊慌不仅在围棋界蔓延,而且扩展到了几乎每一个领域,翻译受到的冲击尤为严重。深度学习的出现极大地变革了机...

56918
来自专栏新智元

【报告】邓志东:人工智能前沿技术与产业发展趋势(53PPT)

【新智元导读】感谢清华大学计算机系教授邓志东向新智元投稿,他在《人工智能前沿技术与产业发展趋势》报告中指出,深度学习是人工智能的最新突破,一定要和大数据结合起来...

5027
来自专栏新智元

【让AI学习更像人】贝叶斯的觉醒:不确定性、高斯过程的重要性

【新智元导读】 深度学习火热的背后,也带来了对神经网络自身能力的质疑,特别是被人诟病的“黑箱”问题。本文介绍了一些通过不同于深度学习的路径实现 AI 的公司,强...

2604
来自专栏数据猿

影创科技的创始人兼CEO孙立:AI在增强现实中怎么用

数据猿导读 我们在光学上做了非常多的研究。首先是现在国内外量产能力非常不错的一个产品,是自由曲面,通过可量产的方案解决增强现实眼镜价值比较贵的问题。当然如果个人...

3505
来自专栏大数据文摘

斯坦福项目NeutralTalk:让电脑像人一样看懂照片

20110
来自专栏大数据文摘

干货 | 北大林作铨教授:从事AI研究30年,我如何看待人工智能

1952

扫码关注云+社区