如何准备机器学习工程师的面试 ?

问题

我之前面试一些公司的机器学习或者数据挖掘工程师的职位。感觉自己准备的不够充分。想了解下一般会问哪些问题,考察哪些方面的东西。

我面试过5-6家互联网公司的数据挖掘和分析、机器学习相关职位的工程师。被问到下面一些问题:

  • SVM的原理,SVM里面的核
  • K-means,如何用hadoop实现k-means
  • naive bayes和logistic regression的区别
  • LDA的原理和推导
  • 做广告点击率预测,用哪些数据什么算法
  • 推荐系统的算法中最近邻和矩阵分解各自适用场景
  • 用户流失率预测怎么做(游戏公司的数据挖掘都喜欢问这个)
  • 一个游戏的设计过程中该收集什么数据
  • 如何从登陆日志中挖掘尽可能多的信息

这些问题我回答的情况,分几种。一种是在面试官的提示下,算是勉强完成了答案。一种是在面试官的提示下,答了一点但是答得不够好。一种是面试官不提示也没有反馈,我回答了但是我不知道回答得怎样。 我非常后悔的一点是我现在才想起来总结。有一个题是游戏玩家流失率预测,我被问过两次。但是每次我都说是个分类问题。最近我突然想起来去网上查了下,有两个点,数据不平衡问题和时间序列分析。我网上查到是一个大学教授和人人游戏合作的课题。我然后查了下这个老师的publication。没发现相关的论文。可能公司不让发表吧。 这些问题的特点是很基础很简单,因为实际中很少用复杂的算法,复杂的算法不好控制,而且理论要求高。另一个特点是注重考查实际工程能力,我经常被问到自己实现了哪些算法。还有的问题很契合实际。 我觉得如果现在再给我准备的机会。我会准备下面几点。 首先是计算机基础知识和算法,这些都是会正常考察的。有些公司考的少,有些公司正常考察。 针对机器学习这部分,需要理论扎实,还需要自己动手实现代码。另外hadoop,mpi,最近比较火的spark,应该都是加分项。另一个是接触下实际的数据分析系统。我在学校里面看的论文,都是讲算法的多,讲应用系统的少。这个可以靠之前的实习,也可以看些比较实用的论文。(Via:知乎)

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2015-04-22

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏飞总聊IT

AI时代:算法上天,道德入地

1 随着AI热的兴起,算法这个原本专属于计算机行业的词汇也开始频繁出现在公众眼里。仔细一看,算法和算力这些词颇有神秘感。算法本来的定义是计算机专业领域用来解决问...

33411
来自专栏CSDN技术头条

黄广斌谈ELM进展:为深度学习提供理论支持, 将勾连生物学习

强大的深度神经网络,仍有很多待解决的问题。超限学习机(ELM)发明人、新加坡南洋理工大学副教授黄广斌认为,ELM能够有效地拓展神经网络的理论和算法。近日,黄广斌...

2029
来自专栏镁客网

文字直接转视频,科学家用机器学习算法实现这种操作 | 黑科技

1044
来自专栏CSDN技术头条

SDCC 2015算法专场札记:知名互联网公司的算法实践

【编者按】11月21日,为期三天的SDCC2015中国软件开发者大会成功闭幕,主办方总计邀请了95余位演讲嘉宾,为参会者奉献了10个主题演讲,9大技术专场论坛(...

1826
来自专栏DT数据侠

这个人工智能,能帮你从3050家P2P平台中挑出最不会跑路的

大数据不仅可以帮你看到城市顽疾,还可以做很多你想不到的事情。比如,互联网金融。来自感知城市数据科学研究院、交大OMNILab实验室的这个作品,就研究的是2015...

500
来自专栏机器学习算法与Python学习

一篇文章讲清楚人工智能、机器学习和深度学习的区别与联系

关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 人工智能的浪潮正在席卷全球,诸多词汇...

4257
来自专栏大数据文摘

教机器遗忘或许比学习更重要:让AI健忘的三种方式

933
来自专栏AI科技大本营的专栏

CCAI 2017 | 邓小铁:金融博弈下的价值学习

上海交通大学计算机系邓小铁教授 文/CSDN焦燕 7 月 22 - 23 日,在中国科学技术协会、中国科学院的指导下,由中国人工智能学会、阿里巴巴集团 & 蚂蚁...

3426
来自专栏CDA数据分析师

数据分析从哪里开始入门学习,可以推荐的书有哪些?

作者 Gam 本文为CDA志愿者投稿作品,转载需授权 数据行业在迅速的发展,几乎每天都会出现新的技术和方法。因此,想要跟上这个行业的步伐是有挑战性的。之前C...

2777
来自专栏数据科学与人工智能

【数据分析】客户细分

何为客户细分?是技术,更是艺术 客户细分是20世纪50年代中期由美国学者温德尔史密斯提出的,其理论依据在于顾客需求的异质性和企业需要在有限资源的基础上进行有效地...

2298

扫描关注云+社区