一名数据分析师的职业规划

我小时候的理想是将来做一名数学家,可惜长大了发现自己天赋不够,理想渐行渐远,于是开始考虑现实,开始做一些人生规划,我一直在思考将来从事何种职业,专注什么样的领域,重新定义着自己的职业理想。我现在的职业理想,比较简单,就是做一名数据分析师。

1为什么要做数据分析师?

在通信、互联网、金融等这些行业每天产生巨大的数据量(长期更是积累了大量丰富的数据,比如客户交易数据等等),据说到2020年,全球每年产生的数据量达到3500万亿GB;海量的历史数据是否有价值,是否可以利用为领导决策提供参考依据?随着软件工具、数据库技术、各种硬件设备的飞快发展,使得我们分析海量数据成为可能。

而数据分析也越来越受到领导层的重视,借助报表告诉用户什么已经发生了,借助OLAP和可视化工具等分析工具告诉用户为什么发生了,通过dashboard监控告诉用户现在在发生什么,通过预报告诉用户什么可能会发生。数据分析会从海量数据中提取、挖掘对业务发展有价值的、潜在的知识,找出趋势,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业内部的科学化、信息化管理。

我们举两个通过数据分析获得成功的例子:

(1) Facebook广告与微博、SNS等网络社区的用户相联系,通过先进的数据挖掘与分析技术,为广告商提供更为精准定位的服务,该精准广告模式收到广大广告商的热捧,根据市场调研机构eMarketer的数据,Facebook年营收额超过20亿美元,成为美国最大的在线显示广告提供商。

(2) Hitwise发布会上,亚太区负责人John举例说明: 亚马逊30%的销售是来自其系统自动的产品推荐,通过客户分类,测试统计,行为建模,投放优化四步,运营客户的行为数据带来竞争优势。

此外,还有好多好多,数据分析,在营销、金融、互联网等方面应用是非常广泛的:比如在营销领域,有数据库营销,精准营销,RFM分析,客户分群,销量预测等等;在金融上预测股价及其波动,套利模型等等;在互联网电子商务上面,百度的精准广告,淘宝的数据魔方等等。类似成功的案例会越来越多,以至于数据分析师也越来越受到重视。

然而,现实却是另一种情况。我们来看一个来自微博上的信息:在美国目前面临14万~19万具有数据分析和管理能力的专业人员,以及150万具有理解和决策能力(基于对海量数据的研究)的管理人员和分析人员的人才短缺。而在中国,受过专业训练并有经验的数据分析人才,未来三年,分析能力人才供需缺口将逐渐放大,高级分析人才难寻。也就是说,数据分析的需求在不断增长,然而合格的为企业做分析决策的数据分析师却寥寥无几。好多人想做数据分析却不知道如何入手,要么不懂得如何清洗数据,直接把数据拿来就用;要么乱套模型,分析的头头是道,其实完全不是那么回事。按俗话说就是:见过猪跑,没吃过猪肉。

2我的职业规划:

对于数据分析,有一句话说的非常好:spss/sql之类的软件、决策树、时间序列之类的方法,这些仅仅就都是个工具而已,最重要的是对业务的把握。没有正确的业务理解,再牛的理论,再牛的工具,都是白搭。做一名合格的数据分析师,除了对数据需要有良好的敏感性之外,对相关业务的背景的深入了解,对客户或业务部门的需求的清晰认识。根据实际的业务发展情况识别哪些数据可用,哪些不适用,而不是孤立地在“真空环境”下进行分析。

为此,我对自己的规划如下:

第一步:掌握基本的数据分析知识(比如统计,概率,数据挖掘基础理论,运筹学等),掌握基本的数据分析软件(比如,VBA,Matlab,Spss,Sql等等),掌握基本的商业经济常识(比如宏微观经济学,营销理论,投资基础知识,战略与风险管理等等)。这些基础知识,在学校里尽量的学习,而且我来到了和君商学院,这样我可以在商业分析、经济分析上面领悟到一些东西,增强我的数据分析能力。

第二步:参与各种实习。研一开始我当时虽然有课,不过很幸运的找到一份一周只需去一两天的兼职,内容是为三星做竞争对手分析,当然分析框架是leader给定了,我只是做整合资料和往ppt里填充的内容的工作,不过通过兼职,我接触到了咨询行业,也向正式员工学习了很多商业分析、思考逻辑之类的东西。之后去西门子,做和VBA的事情,虽然做的事情与数据分析无关,不过在公司经常用VBA做一些自动化处理工作,为自己的数据分析工具打好了基础。再之后去了易车,在那里兼职了一个多月,参与了大众汽车销量数据短期预测的项目,一个小项目下来,数据分析的方法流程掌握了不少,也了解了企业是如何用一些时间序列模型去参与预测的,如何选取某个拟合曲线作为预测值。现在,我来到新的地方实习,也非常幸运的参加了一个央企的码头堆场优化系统设计,其实也算数据分析的一种吧,通过码头的数据实施调度,通过码头的数据进行决策,最后写成一个可操作的自动化系统。而这个项目,最重要的就是业务流程的把握,我也参与项目最初的需求调研,和制定工作任务说明书SOW,体会颇多。

第三步:第一份工作,预计3-5年。我估计会选择咨询公司或者IT公司吧,主要是做数据分析这块比较强的公司,比如Fico,埃森哲,高沃,瑞尼尔,IBM,AC等等。通过第一份工作去把自己的知识打得扎实些,学会在实际中应用所学,学会数据分析的流程方法,让自己成长起来。

第四步:去自己喜欢的一个行业,深入了解这个行业,并讲数据分析应用到这个行业里。比如我可以去电子商务做数据分析师。我觉得我选择电子商务,是因为未来必将是互联网的时代,电子商务必将取代传统商务,最显著的现象就是传统零售商老大沃尔玛正在受到亚马逊的挑战。此外,电子商务比传统的零售商具有更好的数据收集和管理能力,可以更好的跟踪用户、挖掘潜在用户、挖掘潜在商品。

第五步:未知。我暂时没有想法,不过我希望我是在一直的进步。

有一位数据分析牛人曾经总结过数据分析师的能力和目标:

能力:

一定要懂点战略、才能结合商业;

一定要漂亮的presentation、才能buying;

一定要有global view、才能打单;

一定要懂业务、才能结合市场;

一定要专几种工具、才能干活;

一定要学好、才能有效率;

一定要有强悍理论基础、才能入门;

一定要努力、才能赚钱;最重要的:

一定要务实、才有reputation;

不懂的话以后慢慢就明白了。

目标:

1-做过多少个项目?

2-业务背景有哪些,是否跨行业?

3-做过多少种类型的模型?做了多少个模型?

4-基于模型做过多少次完整的marketing闭环?

以上四个问题,足以秒杀95%以上的忽悠和菜鸟!

我仅以此为努力之坐标,时刻提醒自己。

路在前方,漫漫前行。

(Via:和君商学院)

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2015-04-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏量子位

联想高校AI精英挑战赛再下一城,10项目逐鹿华中科大,智能大数据平台夺冠

允中 发自 江城 量子位 报道 | 公众号 QbitAI ? 刚刚,联想创投集团主办的“中国有AI·联想高校AI精英挑战赛”,结束了第二站暨华中赛区晋级赛角逐...

2974
来自专栏AI科技大本营的专栏

趋势 | 一张图看尽硅谷263家无人驾驶公司

想蹭热点投资无人驾驶?看看硅谷的风投都在关注哪些公司! 文中提到263家与无人驾驶相关的公司,可能大部分你都没听过,但这些正是硅谷新的投资机会所在。 编译 ...

2586
来自专栏吉浦迅科技

NVIDIA大数据再放异彩 首届BDA展现成果

由全球视觉计算行业领袖NVIDIA® (英伟达™)和中科院联合举办的首届“大数据分析论坛(BDA 2015)”于10月26日成功举办,从“大数据分析领域...

32811
来自专栏大数据文摘

业界 | Facebook正在招聘人类AI编辑,完全依靠算法的内容分发时代终结?

952
来自专栏PPV课数据科学社区

《未来简史》作者赫拉利:人工智能无法与人类媲美的是人类的意识

☞【下载】深度学习入门资源(附资料下载) ? 7月9日,“未来已来”全球人工智能高峰论坛在浙江杭州举行,耶路撒冷希伯来大学历史系教授、《未来简史》和《人类简史》...

3225
来自专栏DT数据侠

你的城市比上海商业发展落后几年?消费数据测出了“时间差”

这几年电商行业如火如荼,给诸多线下零售业态带来了冲击,但这并不意味着线下没有新的机遇。面对全国不同线级城市的零售市场,怎样找准定位精准布局?又如何在混沌之中找到...

650
来自专栏大数据文摘

播报 | 走访中国深度学习初创公司后,斯坦福资深投资人划下这些重点

1794
来自专栏DT数据侠

从迪士尼到谷歌,他用推荐算法玩儿转数据科学 | 数据科学50人·鲁颖

鲁颖,曾任美国迪士尼集团首席数据科学家,他领导开发了迪士尼的用户个性化推荐系统,在个性化推荐算法领域有着丰富经历。现任谷歌高级数据科学家,领导 Google P...

610
来自专栏数据猿

当人工智能遇上游戏:机遇还是毒药?

日益增长的游戏市场当中,人工智能的应用也会越来越多,同样也为游戏市场和游戏开发者带来更多的挑战。 记者 | 大文 官网 | www.datayuan.cn 微信...

2413
来自专栏钱塘大数据

【推荐阅读】10种热门职业正受大数据威胁,里面有你吗?

导读:波士顿咨询集团已经预测,到2025年,目前人类胜任的1/4工作将被智能软件或机器人取代。牛津大学的研究也显示,英国目前35%的人类工作未来20年有被自动化...

3148

扫码关注云+社区