keras学习笔记-黑白照片自动着色的神经网络-Alpha版

如今,上色都是人手工用Photoshop做的,一张图片要花好几个月才能完成,需要进行大量调查研究,光是其中的一张脸就需要多达20层图层。但是,基于深度神经网络的自动着色机器人,可以几秒钟就实现PS几个月的效果,而且成效越来越惊人。

下面,我们将分三个步骤展示如何打造你自己的着色神经网络。第一部分讲解核心逻辑。我们将构建一个40行代码的神经网络,作为“Alpha”着色机器人,这个代码片段实际上没有太多的魔法,但可以让你熟悉基本操作。

然后,我们将创建一个可以泛化的神经网络——“Beta”版本。Beta机器人能对以前没有看到的图像着色。

最后,我们将神经网络与一个分类器相结合,得到“最终”版本。我们将使用120万张图像训练过的Inception Resnet V2。为了让着色效果吸引眼球,我们将使用Unsplash(免费图库,里面的图片非常有艺术感和设计感)的人像作为数据,训练我们的神经网络。

核心技术拆解:自动着色=发现灰度与彩色间的特征

1、黑白图像可以在像素网格中表示。每个像素具有对应于其亮度的值,范围为0 - 255,从黑色到白色。

2、彩色图像由三层组成:红色层,绿色层和蓝色层。直观地,你可能会认为植物只存在于绿色层。但是,如下图所示,绿色的叶子在三个通道中都有。这些层不仅可以确定颜色,还可以确定亮度。

为了得到白色这个颜色,需要将所有颜色均匀分布。通过添加等量的红色和蓝色,绿色会变得更亮。因此,彩色图像使用三层对颜色和对比度进行编码

就像黑白图像一样,彩色图像中每个图层的值也都为0 - 255。值为0意味着该图层中没有颜色。 如果所有颜色通道的值都为0,则图像像素为黑色。

神经网络会创建输入值和输出值之间的关系。更准确地说,着色任务实际上就是网络需要找到链接灰度图像与彩色图像的特征。

因此,着色机器人要寻找的,就是将灰度值网格链接到三色网格的特征。

01

Alpha版本:40行代码,实现基础着色机器人

我们从简单的神经网络开始,给一张女性脸部图像(见下)着色。

只需40行代码,我们就能实现以下转换。中间的图像是用神经网络完成的,右边的图片是原始的彩色照片。当然,这里的网络使用了相同的图像做训练和测试,稍后我们将在Beta版本中再来讲这一点。

颜色空间

首先,我们使用一种算法来改变颜色通道,从RGB到Lab。L表示亮度,a和b分别表示颜色光谱,绿-红和蓝-黄。

如下所示,Lab编码的图像有一层灰度,将三层颜色层压成两层。这意味着我们可以在最终预测中使用原始的灰度图像。 此外,我们只有两个通道做预测。

人类眼睛中有94%的细胞是确定亮度的,这是个科学事实。只有6%的受体被用作颜色的传感器。如上图所示,灰度图像比彩色层更加清晰。这也是我们最终预测中保持灰度图像的另一个原因。

从黑白到彩色

我们的最终预测是这样的。我们有一个输入灰度层,我们想预测Lab中的两个彩色层。要创建最终的彩色图像,我们将纳入用于输入的L/灰度图像,从而创建一个Lab图像。

我们使用卷积滤波器将一层转成两层。你可以将它们视为3D眼镜中的蓝/红滤镜。每个滤波器确定我们在图片中看到的内容,可以突出显示或删除某些东西,从图片中提取信息。网络可以从滤波器中创建新的图像,也可以将多个滤波器组合成一个图像。

卷积神经网络的每个滤波器都自动调整,以帮助预期的结果。我们从堆叠数百个滤镜开始,然后将它们缩小为两层,即a层和b层。

下面是FloydHub代码:

from keras.layers import Conv2D, UpSampling2D, InputLayer, Conv2DTranspose
from keras.layers import Activation, Dense, Dropout, Flatten
from keras.layers.normalization import BatchNormalization
from keras.models import Sequential
from keras.preprocessing.image 
import ImageDataGenerator, array_to_img, img_to_array, load_img
from skimage.color import rgb2lab, lab2rgb, rgb2gray, xyz2lab
from skimage.io import imsave
import numpy as np
import os
import random
import tensorflow as tf
Using TensorFlow backend.# Get 
imagesimage = img_to_array(load_img('woman.jpg')) image = np.array(image, dtype=float)  X = rgb2lab(1.0/255*image)[:,:,0] Y = rgb2lab(1.0/255*image)[:,:,1:] Y /= 128X = X.reshape(1, 400, 400, 1) Y = Y.reshape(1, 400, 400, 2)# Building the neural networkmodel = Sequential() model.add(InputLayer(input_shape=(None, None, 1))) model.add(Conv2D(8, (3, 3), activation='relu', padding='same', strides=2)) model.add(Conv2D(8, (3, 3), activation='relu', padding='same')) model.add(Conv2D(16, (3, 3), activation='relu', padding='same')) model.add(Conv2D(16, (3, 3), activation='relu', padding='same', strides=2)) model.add(Conv2D(32, (3, 3), activation='relu', padding='same')) model.add(Conv2D(32, (3, 3), activation='relu', padding='same', strides=2)) model.add(UpSampling2D((2, 2))) model.add(Conv2D(32, (3, 3), activation='relu', padding='same')) model.add(UpSampling2D((2, 2))) model.add(Conv2D(16, (3, 3), activation='relu', padding='same')) model.add(UpSampling2D((2, 2))) model.add(Conv2D(2, (3, 3), activation='tanh', padding='same'))# Finish modelmodel.compile(optimizer='rmsprop', loss='mse')  model.fit(x=X, y=Y, batch_size=1, epochs=1000)
Epoch 1/1000
1/1 [==============================] - 1s - loss: 0.0286 Epoch 2/1000 1/1 [==============================] - 0s - loss: 0.0238  Epoch 318/1000 1/1 [==============================] - 0s - loss: 0.0010 Epoch 319/1000 1/1 [==============================] - 0s - loss: 7.4259e-04  Epoch 590/1000 1/1 [==============================] - 0s - loss: 5.5838e-04 Epoch 591/1000 1/1 [==============================] - 0s - loss: 4.7110e-04 Epoch 592/1000   Epoch 845/1000 1/1 [==============================] - 0s - loss: 3.5430e-04 Epoch 846/1000 1/1 [==============================] - 0s - loss: 2.9861e-04  1/1 [==============================] - 0s - loss: 3.0116e-04 Epoch 996/1000 1/1 [==============================] - 0s - loss: 3.1555e-04 Epoch 997/1000 1/1 [==============================] - 0s - loss: 3.0418e-04 Epoch 998/1000 1/1 [==============================] - 0s - loss: 4.3305e-04 Epoch 999/1000 1/1 [==============================] - 0s - loss: 3.9781e-04 Epoch 1000/1000 1/1 [==============================] - 0s - loss: 5.8701e-04<keras.callbacks.History at 0x11ccb6860>
print(model.evaluate(X, Y, batch_size=1)) output = model.predict(X) output *= 128# Output colorizationscur = np.zeros((400, 400, 3)) cur[:,:,0] = X[0][:,:,0] cur[:,:,1:] = output[0] imsave("img_result.png", lab2rgb(cur)) imsave("img_gray_version.png", rgb2gray(lab2rgb(cur)))
1/1 [==============================] - 0s 0.000459772680188 /usr/local/lib/python3.6/site-packages/skimage/util/dtype.py:122: UserWarning: Possible precision loss when converting from float64 to uint8 
.format(dtypeobj_in, dtypeobj_out))
/usr/local/lib/python3.6/site-packages/skimage/util/dtype.py:122: UserWarning: Possible precision loss when converting from float64 to uint16   .format(dtypeobj_in, dtypeobj_out))
# 可视化数据集
import matplotlib.pyplot as plt %matplotlib inline   plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
img = lab2rgb(cur) title = '黑白照片自动着色的神经网络-Alpha版'plt.imshow(img) plt.title(title)
plt.show()

output_7_0.png

Alpha版本不能很好地给未经训练的图像着色。接下来,我们将在Beta版本中做到这一点——将上面的将神经网络泛化。

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2018-01-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器学习原理

NLP(1)——词向量one hot编码词向量编码思想Word2VecEmbeddingSkip-gram的原理负采样

25310
来自专栏量子位

看图猜口袋妖怪属性,这个神经网络可能比你强!(教程)

△ Who’s that Pokémon王新民 编译自 博客Journal of Geek Studies 量子位·QbitAI 出品 还记得去年异常火爆,然而...

3526
来自专栏深度学习自然语言处理

【深度学习】你该会的精选面试题(一)

解析:正确答案A,更多层意味着网络更深。没有严格的定义多少层的模型才叫深度模型,目前如果有超过2层的隐层,那么也可以及叫做深度模型。

955
来自专栏TonyZhou的专栏

深度学习解决 NLP 问题:语义相似度计算

本文通过介绍DSSM、CNN-DSSM、LSTM-DSSM等深度学习模型在计算语义相似度上的应用,希望给读者带来帮助。

8.2K3
来自专栏新智元

计算机视觉中,目前有哪些经典的目标跟踪算法?

【新智元导读】这篇文章将非常详细地介绍计算机视觉领域中的目标跟踪,尤其是相关滤波类方法,分享一些作者认为比较好的算法。 相信很多来这里的人和我第一次到这里一样,...

46510
来自专栏专知

【SIGGRAPH Asia 2017 论文选读】基于图片风格特征的画家代表作选取

【导读】第十届ACM SIGGRAPH Asia亚洲电脑图形及互动技术展览会将于今年11月27日至30日,在泰国的首都-曼谷隆重举行。本篇选取文章来自我们课题组...

2674
来自专栏AI科技评论

深度 | 用于大规模行人重识别的行人对齐网络

1.Motivation 近年来,对行人重识别(person re-ID)问题的研究也越来越多了。类比于自然语言处理(nlp)的话,大家或者集中于语义层面的设计...

3458
来自专栏机器之心

专栏 | 大漠孤烟,长河落日:面向景深结构的风景照生成技术

机器之心专栏 上海交通大学电子工程系 作者:杨蕊 简介 2014 年以来,生成对抗网络(Generative Adversarial Networks)已经在各...

2728
来自专栏人工智能头条

计算机视觉中,目前有哪些经典的目标跟踪算法?

2036
来自专栏AI科技大本营的专栏

教程 | 用AI生成猫的图片,撸猫人士必备

编译 | 小梁 【AI科技大本营导读】我们身边总是不乏各种各样的撸猫人士,面对朋友圈一波又一波晒猫的浪潮,作为学生狗和工作狗的我们只有羡慕的份,更流传有“吸猫...

3989

扫描关注云+社区