keras学习笔记-黑白照片自动着色的神经网络-Alpha版

如今,上色都是人手工用Photoshop做的,一张图片要花好几个月才能完成,需要进行大量调查研究,光是其中的一张脸就需要多达20层图层。但是,基于深度神经网络的自动着色机器人,可以几秒钟就实现PS几个月的效果,而且成效越来越惊人。

下面,我们将分三个步骤展示如何打造你自己的着色神经网络。第一部分讲解核心逻辑。我们将构建一个40行代码的神经网络,作为“Alpha”着色机器人,这个代码片段实际上没有太多的魔法,但可以让你熟悉基本操作。

然后,我们将创建一个可以泛化的神经网络——“Beta”版本。Beta机器人能对以前没有看到的图像着色。

最后,我们将神经网络与一个分类器相结合,得到“最终”版本。我们将使用120万张图像训练过的Inception Resnet V2。为了让着色效果吸引眼球,我们将使用Unsplash(免费图库,里面的图片非常有艺术感和设计感)的人像作为数据,训练我们的神经网络。

核心技术拆解:自动着色=发现灰度与彩色间的特征

1、黑白图像可以在像素网格中表示。每个像素具有对应于其亮度的值,范围为0 - 255,从黑色到白色。

2、彩色图像由三层组成:红色层,绿色层和蓝色层。直观地,你可能会认为植物只存在于绿色层。但是,如下图所示,绿色的叶子在三个通道中都有。这些层不仅可以确定颜色,还可以确定亮度。

为了得到白色这个颜色,需要将所有颜色均匀分布。通过添加等量的红色和蓝色,绿色会变得更亮。因此,彩色图像使用三层对颜色和对比度进行编码

就像黑白图像一样,彩色图像中每个图层的值也都为0 - 255。值为0意味着该图层中没有颜色。 如果所有颜色通道的值都为0,则图像像素为黑色。

神经网络会创建输入值和输出值之间的关系。更准确地说,着色任务实际上就是网络需要找到链接灰度图像与彩色图像的特征。

因此,着色机器人要寻找的,就是将灰度值网格链接到三色网格的特征。

01

Alpha版本:40行代码,实现基础着色机器人

我们从简单的神经网络开始,给一张女性脸部图像(见下)着色。

只需40行代码,我们就能实现以下转换。中间的图像是用神经网络完成的,右边的图片是原始的彩色照片。当然,这里的网络使用了相同的图像做训练和测试,稍后我们将在Beta版本中再来讲这一点。

颜色空间

首先,我们使用一种算法来改变颜色通道,从RGB到Lab。L表示亮度,a和b分别表示颜色光谱,绿-红和蓝-黄。

如下所示,Lab编码的图像有一层灰度,将三层颜色层压成两层。这意味着我们可以在最终预测中使用原始的灰度图像。 此外,我们只有两个通道做预测。

人类眼睛中有94%的细胞是确定亮度的,这是个科学事实。只有6%的受体被用作颜色的传感器。如上图所示,灰度图像比彩色层更加清晰。这也是我们最终预测中保持灰度图像的另一个原因。

从黑白到彩色

我们的最终预测是这样的。我们有一个输入灰度层,我们想预测Lab中的两个彩色层。要创建最终的彩色图像,我们将纳入用于输入的L/灰度图像,从而创建一个Lab图像。

我们使用卷积滤波器将一层转成两层。你可以将它们视为3D眼镜中的蓝/红滤镜。每个滤波器确定我们在图片中看到的内容,可以突出显示或删除某些东西,从图片中提取信息。网络可以从滤波器中创建新的图像,也可以将多个滤波器组合成一个图像。

卷积神经网络的每个滤波器都自动调整,以帮助预期的结果。我们从堆叠数百个滤镜开始,然后将它们缩小为两层,即a层和b层。

下面是FloydHub代码:

from keras.layers import Conv2D, UpSampling2D, InputLayer, Conv2DTranspose
from keras.layers import Activation, Dense, Dropout, Flatten
from keras.layers.normalization import BatchNormalization
from keras.models import Sequential
from keras.preprocessing.image 
import ImageDataGenerator, array_to_img, img_to_array, load_img
from skimage.color import rgb2lab, lab2rgb, rgb2gray, xyz2lab
from skimage.io import imsave
import numpy as np
import os
import random
import tensorflow as tf
Using TensorFlow backend.# Get 
imagesimage = img_to_array(load_img('woman.jpg')) image = np.array(image, dtype=float)  X = rgb2lab(1.0/255*image)[:,:,0] Y = rgb2lab(1.0/255*image)[:,:,1:] Y /= 128X = X.reshape(1, 400, 400, 1) Y = Y.reshape(1, 400, 400, 2)# Building the neural networkmodel = Sequential() model.add(InputLayer(input_shape=(None, None, 1))) model.add(Conv2D(8, (3, 3), activation='relu', padding='same', strides=2)) model.add(Conv2D(8, (3, 3), activation='relu', padding='same')) model.add(Conv2D(16, (3, 3), activation='relu', padding='same')) model.add(Conv2D(16, (3, 3), activation='relu', padding='same', strides=2)) model.add(Conv2D(32, (3, 3), activation='relu', padding='same')) model.add(Conv2D(32, (3, 3), activation='relu', padding='same', strides=2)) model.add(UpSampling2D((2, 2))) model.add(Conv2D(32, (3, 3), activation='relu', padding='same')) model.add(UpSampling2D((2, 2))) model.add(Conv2D(16, (3, 3), activation='relu', padding='same')) model.add(UpSampling2D((2, 2))) model.add(Conv2D(2, (3, 3), activation='tanh', padding='same'))# Finish modelmodel.compile(optimizer='rmsprop', loss='mse')  model.fit(x=X, y=Y, batch_size=1, epochs=1000)
Epoch 1/1000
1/1 [==============================] - 1s - loss: 0.0286 Epoch 2/1000 1/1 [==============================] - 0s - loss: 0.0238  Epoch 318/1000 1/1 [==============================] - 0s - loss: 0.0010 Epoch 319/1000 1/1 [==============================] - 0s - loss: 7.4259e-04  Epoch 590/1000 1/1 [==============================] - 0s - loss: 5.5838e-04 Epoch 591/1000 1/1 [==============================] - 0s - loss: 4.7110e-04 Epoch 592/1000   Epoch 845/1000 1/1 [==============================] - 0s - loss: 3.5430e-04 Epoch 846/1000 1/1 [==============================] - 0s - loss: 2.9861e-04  1/1 [==============================] - 0s - loss: 3.0116e-04 Epoch 996/1000 1/1 [==============================] - 0s - loss: 3.1555e-04 Epoch 997/1000 1/1 [==============================] - 0s - loss: 3.0418e-04 Epoch 998/1000 1/1 [==============================] - 0s - loss: 4.3305e-04 Epoch 999/1000 1/1 [==============================] - 0s - loss: 3.9781e-04 Epoch 1000/1000 1/1 [==============================] - 0s - loss: 5.8701e-04<keras.callbacks.History at 0x11ccb6860>
print(model.evaluate(X, Y, batch_size=1)) output = model.predict(X) output *= 128# Output colorizationscur = np.zeros((400, 400, 3)) cur[:,:,0] = X[0][:,:,0] cur[:,:,1:] = output[0] imsave("img_result.png", lab2rgb(cur)) imsave("img_gray_version.png", rgb2gray(lab2rgb(cur)))
1/1 [==============================] - 0s 0.000459772680188 /usr/local/lib/python3.6/site-packages/skimage/util/dtype.py:122: UserWarning: Possible precision loss when converting from float64 to uint8 
.format(dtypeobj_in, dtypeobj_out))
/usr/local/lib/python3.6/site-packages/skimage/util/dtype.py:122: UserWarning: Possible precision loss when converting from float64 to uint16   .format(dtypeobj_in, dtypeobj_out))
# 可视化数据集
import matplotlib.pyplot as plt %matplotlib inline   plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
img = lab2rgb(cur) title = '黑白照片自动着色的神经网络-Alpha版'plt.imshow(img) plt.title(title)
plt.show()

output_7_0.png

Alpha版本不能很好地给未经训练的图像着色。接下来,我们将在Beta版本中做到这一点——将上面的将神经网络泛化。

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2018-01-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏深度学习思考者

Vehicle Logo Recognition System Based on Convolutional Neural Networks With a Pretraining Strategy

论文笔记Ⅰ 基于卷积神经网络的车辆标记识别系统 考虑文章中一些语法以及用词还挺好,先记录一下,留下来以后可能用到自己的paper中。 Abstract 由...

2378
来自专栏机器之心

学界 | 如何通过方差偏移理解批归一化与Dropout之间的冲突

3035
来自专栏数据科学与人工智能

【数据分析】数据分析领域中最为人称道的七种降维方法|技术专区

近来由于数据记录和属性规模的急剧增长,大数据处理平台和并行数据分析算法也随之出现。于此同时,这也推动了数据降维处理的应用。实际上,数据量有时过犹不及。有时在数据...

2096
来自专栏null的专栏

简单易学的机器学习算法——主成分分析(PCA)

一、数据降维        对于现在维数比较多的数据,我们首先需要做的就是对其进行降维操作。降维,简单来说就是说在尽量保证数据本质的前提下将数据中的维数降低。降...

3395
来自专栏机器学习算法原理与实践

文本主题模型之LDA(一) LDA基础

    在前面我们讲到了基于矩阵分解的LSI和NMF主题模型,这里我们开始讨论被广泛使用的主题模型:隐含狄利克雷分布(Latent Dirichlet Allo...

1152
来自专栏智能算法

机器学习三人行(系列十)----机器学习降压神器(附代码)

系列九我们从算法组合的角度一起实战学习了一下组合算法方面的知识,详情戳下链接: 机器学习三人行(系列九)----千变万化的组合算法(附代码) 但是,我们也知道算...

3929
来自专栏鸿的学习笔记

写给开发者的机器学习指南(二)

在机器学习领域有两种主要的学习方式,即监督学习和无监督学习。当您想在您的应用程序中使用机器学习时,需要简要说明下,因为选择正确的机器学习方法和算法是一个重要但有...

962
来自专栏小詹同学

深度学习神经网络第①篇——感知器及其Python实现

感知器是由美国计算机科学家罗森布拉特(F.Roseblatt)于1957年提出的。感知器可谓是最早的人工神经网络。单层感知器是一个具有一层神经元、采用阈值激活函...

1384
来自专栏机器学习算法与Python学习

CS231n课程笔记翻译:图像分类笔记(下)

用于超参数调优的验证集 k-NN分类器需要设定k值,那么选择哪个k值最合适的呢?我们可以选择不同的距离函数,比如L1范数和L2范数等,那么选哪个好?还有不少选择...

3508
来自专栏人工智能LeadAI

TensorFlow从0到1丨第十六篇 L2正则化对抗“过拟合”

前面的第十四篇 交叉熵损失函数——防止学习缓慢和第十五篇 重新思考神经网络初始化从学习缓慢问题入手,尝试改进神经网络的学习。本篇讨论过拟合问题,并引入与之相对的...

34212

扫码关注云+社区