大会 | CVPR 18论文:基于空洞卷积神经网络的高密度人群理解方法

AI 科技评论按:本文作者为美国伊利诺伊大学(UIUC)张晓帆,他为 AI 科技评论撰写了基于 CVPR 录用论文《CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes》的独家解读稿件,未经许可不得转载。

论文地址: https://arxiv.org/pdf/1802.10062.pdf

来自北京邮电大学和美国伊利诺伊大学(UIUC)的研究者们提出一种适用于密集人群计数的空洞卷积神经网络模型 CSRNet。该网络模型摆脱以往广泛应用于人群计数的多通道卷积网络方案,在大幅削减网络参数量和网络训练难度的同时,显著提升了人群计数的精度和人群分布密度图的还原度。该研究已被 CVPR 2018 接收。

人群计数和人群密度估计有着重要的安防应用场景。随着城市人口的日益增长,在地铁站,商场,各种节日集会中,超额聚集的人群带来潜在危险,极容易造成踩踏、骚乱等悲剧。因此,人群计数和人群的密度分布估计成为安防领域的热门课题。近年来,人群计数的算法性能在与深度学习的结合下得到了很大的提升。

人群计数的目的是找出特定场景中的人数,而人群密度分布估计需要获取空间密度信息和人数(密度图求和)。人群计数的难点在于,场景的变化跨度大,目标的尺度变化不尽相同,人和人、人和景物之间存在不同程度的遮挡等等。如图 1 所示,三张图均包含了 95 人,但是他们的空间分布完全不同。

图 1 人群计数场景

作者研究发现,被广泛运用在人群计数上的多通道卷积网络(MCNN)存在着结构冗余、参数繁多、训练困难的局限性。此类多通道卷积网络在不同通道上采取大小不等感受域的卷积网络,以适应不同场景(如高、中、低密集程度)的人群计数需要。但研究发现,不同通道学习到的特征重合度很高(图 2),并没有因场景密集程度不同而出现明显差异。多通道网络表现冗余。为作对比,作者采用一个参数更少、更深层、更易训练的单通道卷积网络(A deeper CNN),获得比多通道网络更好的效果(表 1)。

图 2 多通道卷积网络中的大、中、小通道在 ShanghaiTech PartA 中的测试表现相似

表 1 更深的单通道卷积网络使用较少参数却在 ShanghaiTech PartA 中获得更小误差

此外,作者为了避免过度使用降采样而导致密度图的分辨率损失,在网络的后半部分引入了空洞卷积层,利用空洞卷积增大感受域并维持分辨率(图 3),并提出 CSRNet 网络模型(表 2)。CSRNet 后端四组不同的配置在 ShanghaiTech PartA 中性能测试如表 3。

图 3 使用卷积+池化+上采样(上)与空洞卷积(下)输出同样分辨率图像,空洞卷积可保留更多图像细节

表 2 CSRNet 网络结构,卷积以参数命名为(conv kernel size – channel – dilation rate)

表 3 CSRNet 的四种后端配置在人群计数中精度对比,其中方案 B 精度最高

由于采用比多通道网络更简单的结构,CSRNet 在训练时可直接采用端到端训练并快速复现实验结果,也可利用迁移学习提高训练效果。得益于简单、规整的网络结构,CSRNet 对硬件实现更加友好,可以高效地部署在物联网设备中。

实验表明,CSRNet 在四个公开人群数据集(ShanghaiTech dataset、the UCF CC 50 dataset、the WorldEXPO'10 dataset、the UCSD dataset)和一个车辆数据集(TRANCOS dataset)上均达到了最高水平的精确度(State-of-the-art Performance),详见表 4 至表 8。

表 4 ShanghaiTech 数据集测试结果

表 5 UCF CC 50 数据集测试结果

表 6 WorldExpo' 10 数据集测试结果

表 7 UCSD 数据集测试结果

表 8 TRANCOS 数据集测试结果

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2018-03-07

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏目标检测和深度学习

学界 | 结合主动学习与迁移学习:让医学图像标注工作量减少一半

选自arXiv 作者:Zongwei Zhou, Jae Y. Shin, Suryakanth R. Gurudu, Michael B. Gotway, 梁...

3065
来自专栏腾讯技术工程官方号的专栏

当深度学习成为过去,迁移学习才是真正的未来?

大牛吴恩达曾经说过:做AI研究就像造宇宙飞船,除了充足的燃料之外,强劲的引擎也是必不可少的。假如燃料不足,则飞船就无法进入预定轨道。而引擎不够强劲,飞船甚至不能...

4776
来自专栏AI研习社

谷歌工程师亲自讲解:开源TensorFlow模型在图像、语言和艺术的应用

谷歌2017开发者大会 Google I/O已经落幕,有不少亮点都值得我们学习和回顾,其中相当一部分是机器学习开发的内容。AI研习社精选了其中的精彩视频译制呈现...

3184
来自专栏AI科技评论

学界 | 机器人走路未必笨拙,DeepMind新方法训练的人工智能就走得很飘逸

AI 科技评论按:无论是在树木间乱窜的猴子,还是躲避对手和进击目标的足球运动员,他们灵活敏捷的速度,都让人十分惊叹。掌握这种复杂的电机控制是物理智能研究的方向,...

3429
来自专栏机器之心

学界 | 结合主动学习与迁移学习:让医学图像标注工作量减少一半

3106
来自专栏新智元

解密 NIPS2016 论文评议内幕(附 DeepMind 8 篇论文下载)

【新智元导读】备受推崇的顶级会议NIPS预计12月举行,但从4月起议论就没有停,尤其是围绕论文。今天,组织方公开了NIPS 2016论文评议过程,本文就从这届会...

36015
来自专栏人工智能头条

AI读心术:想象一下,计算机就可以重现意念中的画面

1273
来自专栏机器之心

资源 | 谷歌发布人类动作识别数据集AVA,精确标注多人动作

3097
来自专栏新智元

【Quora精彩问答】机器学习的十条金科玉律

【新智元导读】曾在 Endeca, Google, LinkedIn 负责机器学习项目的 Daniel Tunkelang 在 Quora 上发表了给非专业人士...

3688
来自专栏AI研习社

关于模型可解释性的深入思考:从哪里来,到哪里去?

AI 研习社:本文作者 Cody Marie Wild,不仅是一位机器学习领域的数据科学家(目前任职 phos 公司),在生活中还是名不折不扣的猫咪铲屎官,她钟...

1212

扫码关注云+社区