神经网络瘦身:SqueezeNet

今年二月份,UC Berkeley和Stanford一帮人在arXiv贴了一篇文章:

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5MB model size(https://arxiv.org/abs/1602.07360)

这篇文章做成了许多人梦寐以求的事——压缩神经网络参数。但和以往不同,原作不是在前人网络基础上修修补补(例如Deep Compression),而是自己设计了一个全新的网络,它用了比AlexNet少50倍的参数,达到了AlexNet相同的精度!

关于SqueezeNet的创新点、网络结构,国内已经有若干爱好者发布了相关的简介,如这篇(http://blog.csdn.net/xbinworld/article/details/50897870)、这篇(http://blog.csdn.net/shenxiaolu1984/article/details/51444525),国外的文献没有查,相信肯定也有很多。

本文关注的重点在SqueezeNet为什么能实现网络瘦身?难道网络参数的冗余性就那么强吗?或者说很多参数都是浪费的、无意义的?

为了更好的解释以上问题,先给出AlexNet和SqueezeNet结构图示:

AlexNet


图1 AlexNet示意图
图2 AlexNet网络结构

SqueezeNet


图3 SqueezeNet示意图
图4 SqueezeNet网络结构

为什么SqueezeNet能够以更少的参数实现AlexNet相同的精度?

下面的表格直观的展示了SqueezeNet的参数量,仅为AlexNet的1/48。

网络

参数量

AlexNet

60M

SqueezeNet

1.25M

乍一看,感觉非常不科学,怎么可能相差如此悬殊的参数量实现了相同的识别精度?

我们先考虑一个非常简单的例子,这个例子可以说是SqueezeNet和AlexNet的缩影:

1、一层卷积,卷积核大小为5×5

2、两层卷积,卷积核大小为3×3

以上两种卷积方式除了卷积核大小不同,其它变量均相同,为了方便后文计算,定义输入通道数1,输出通道数为C(两层卷积为C'),输出尺寸N×N。

按照目前的理论,神经网络应该尽可能的采用多层小卷积,以减少参数量,增加网络的非线性。但随着参数的减少,计算量却增加了!根据上面的例子,大致算一下,为了简便,只考虑乘法的计算量:

5×5一层卷积计算量是25×C×N×N

3×3两层卷积的计算量是9×C×(1+C')×N×N

很明显25C<9C(1+C')。

这说明了什么?说明了“多层小卷积核”的确增大了计算量!

我们再回过头考虑SqueezeNet和AlexNet,两个网络的架构如上面4幅图所示,可以看出SqueezeNet比AlexNet深不少,SqueezeNet的卷积核也更小一些,这就导致了SqueezeNet计算量远远高于AlexNet(有待商榷,需要进一步确认,由于Fire module中的squeeze layer从某种程度上减少了计算量,SqueezeNet的计算量可能并不大)。

可是论文原文过度关注参数个数,忽略计算量,这样的对比方式貌似不太妥当。事实上,目前最新的深层神经网络都是通过增加计算量换来更少的参数,可是为什么这样做效果会很好?

因为内存读取耗时要远大于计算耗时!

如此一来,问题就简单了,不考虑网络本身架构的优劣性,深层网络之所以如此成功,就是因为把参数读取的代价转移到计算量上了,考虑的目前人类计算机的发展水平,计算耗时还是要远远小于数据存取耗时的,这也是“多层小卷积核”策略成功的根源。

关于Dense-Sparse-Dense(DSD)训练法

不得不说一下原作的这个小发现,使用裁剪之后的模型为初始值,再次进行训练调优所有参数,正确率能够提升4.3%。 稀疏相当于一种正则化,有机会把解从局部极小中解放出来。这种方法称为DSD (Dense→Sparse→Dense)。

这个和我们人类学习知识的过程是多么相似!人类每隔一段时间重新温习一下学过的知识,会增加对所学知识的印象。我们可以把“隔一段时间”理解为“裁剪”,即忘却那些不怎么重要的参数,“再学习”理解为从新训练,即强化之前的参数,使其识别精度更高!

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2018-03-07

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能头条

卷及网络的弱点,有人想用胶囊网络给解决掉

胶囊网络是 Geoffrey Hinton 提出的一种新型神经网络结构,为了解决卷积神经网络(ConvNets)的一些缺点,提出了胶囊网络。

851
来自专栏企鹅号快讯

你所不能不知道的CNN

说起CNN,最初人们想到的都是某电视台,但等过几年,人们想起的多半是深度学习了。 应该说, CNN是这两年深度学习风暴的罪魁祸首, 自2012年, 正是它让打入...

4998
来自专栏数据科学与人工智能

人工神经网络简介

概要:人工神经网络简称神经网络,是基于生物学中神经网络的基本原理。 一、人工神经网络的概念 人工神经网络(Artificial Neural Network,...

4547
来自专栏腾讯技术工程官方号的专栏

CVPR 2018 | 腾讯AI Lab入选21篇论文详解

腾讯AI Lab共有21篇论文入选,位居国内企业前列,我们将在下文进行详解,欢迎交流与讨论。

1.9K18
来自专栏AI科技评论

学界 | 腾讯 AI Lab 解读19篇 ECCV 2018 入选论文

计算机视觉欧洲大会(European Conference on Computer Vision,简称ECCV)将于9月8日-14日在德国慕尼黑举办,该会议与C...

982
来自专栏机器之心

入门 | 一文概览视频目标分割

3878
来自专栏新智元

谷歌MobileNet: 移动和嵌入式设备视觉应用模型,效果超越众主流模型

【新智元导读】谷歌团队日前提出了一类被称为 MobileNet 的高效模型,用于移动和嵌入式设备的视觉应用。研究人员多次实验的结果,与 ImageNet 分类任...

4946
来自专栏CVer

[计算机视觉论文速递] 2018-03-31

通知:这篇文章有10篇论文速递信息,涉及Re-ID、深度估计、超分辨率、显著性检测、GAN、VOA和卷积神经网络综述等方向 往期回顾 [计算机视觉论文速递] 2...

39814
来自专栏新智元

【Hinton碰撞LeCun】CNN有两大缺陷,要用capsule做下一代CNN

【新智元导读】 在本次演讲中, Hinton讨论了用“capsule”作为下一代CNN的理由。 他解释了“标准”的卷积神经网络有什么问题?结构的层次太少,只有神...

3124
来自专栏人工智能头条

CVPR 2018 | 腾讯AI Lab 21篇入选论文详解

1978

扫码关注云+社区

领取腾讯云代金券