分类算法之朴素贝叶斯分类(Naive Bayesian classification)

我个人一直很喜欢算法一类的东西,在我看来算法是人类智慧的精华,其中蕴含着无与伦比的美感。而每次将学过的算法应用到实际中,并解决了实际问题后,那种快感更是我在其它地方体会不到的。

一直想写关于算法的博文,也曾写过零散的两篇,但也许是相比于工程性文章来说太小众,并没有引起大家的兴趣。最近面临毕业找工作,为了能给自己增加筹码,决定再次复习算法方面的知识,我决定趁这个机会,写一系列关于算法的文章。这样做,主要是为了加强自己复习的效果,我想,如果能将复习的东西用自己的理解写成文章,势必比单纯的读书做题掌握的更牢固,也更能触发自己的思考。如果能有感兴趣的朋友从中有所收获,那自然更好。

这个系列我将其命名为“算法杂货铺”,其原因就是这些文章一大特征就是“杂”,我不会专门讨论堆栈、链表、二叉树、查找、排序等任何一本数据结构教科书都会讲的基础内容,我会从一个“专题”出发,如概率算法、分类算法、NP问题、遗传算法等,然后做一个引申,可能会涉及到算法与数据结构、离散数学、概率论、统计学、运筹学、数据挖掘、形式语言与自动机等诸多方面,因此其内容结构就像一个杂货铺。当然,我会竭尽所能,尽量使内容“杂而不乱”。

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。

1分类问题综述

对于分类问题,其实谁都不会陌生,说我们每个人每天都在执行分类操作一点都不夸张,只是我们没有意识到罢了。例如,当你看到一个陌生人,你的脑子下意识判断TA是男是女;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、那边有个非主流”之类的话,其实这就是一种分类操作。

从数学角度来说,分类问题可做如下定义:

其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合,其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。

这里要着重强调,分类问题往往采用经验性方法构造映射规则,即一般情况下的分类问题缺少足够的信息来构造100%正确的映射规则,而是通过对经验数据的学习从而实现一定概率意义上正确的分类,因此所训练出的分类器并不是一定能将每个待分类项准确映射到其分类,分类器的质量与分类器构造方法、待分类数据的特性以及训练样本数量等诸多因素有关。

例如,医生对病人进行诊断就是一个典型的分类过程,任何一个医生都无法直接看到病人的病情,只能观察病人表现出的症状和各种化验检测数据来推断病情,这时医生就好比一个分类器,而这个医生诊断的准确率,与他当初受到的教育方式(构造方法)、病人的症状是否突出(待分类数据的特性)以及医生的经验多少(训练样本数量)都有密切关系。

贝叶斯分类的基础——贝叶斯定理

每次提到贝叶斯定理,我心中的崇敬之情都油然而生,倒不是因为这个定理多高深,而是因为它特别有用。这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:

2朴素贝叶斯分类的原理与流程

朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。

朴素贝叶斯分类的正式定义如下:

可以看到,整个朴素贝叶斯分类分为三个阶段:

第一阶段——准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分及训练样本质量决定。

第二阶段——分类器训练阶段,这个阶段的任务就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条件概率估计,并将结果记录。其输入是特征属性和训练样本,输出是分类器。这一阶段是机械性阶段,根据前面讨论的公式可以由程序自动计算完成。

第三阶段——应用阶段。这个阶段的任务是使用分类器对待分类项进行分类,其输入是分类器和待分类项,输出是待分类项与类别的映射关系。这一阶段也是机械性阶段,由程序完成。

3估计类别下特征属性划分的条件概率及Laplace校准

这一节讨论P(a|y)的估计。

由上文看出,计算各个划分的条件概率P(a|y)是朴素贝叶斯分类的关键性步骤,当特征属性为离散值时,只要很方便的统计训练样本中各个划分在每个类别中出现的频率即可用来估计P(a|y),下面重点讨论特征属性是连续值的情况。

当特征属性为连续值时,通常假定其值服从高斯分布(也称正态分布)。即:

因此只要计算出训练样本中各个类别中此特征项划分的各均值和标准差,代入上述公式即可得到需要的估计值。均值与标准差的计算在此不再赘述。

另一个需要讨论的问题就是当P(a|y)=0怎么办,当某个类别下某个特征项划分没有出现时,就是产生这种现象,这会令分类器质量大大降低。为了解决这个问题,我们引入Laplace校准,它的思想非常简单,就是对没类别下所有划分的计数加1,这样如果训练样本集数量充分大时,并不会对结果产生影响,并且解决了上述频率为0的尴尬局面。

4朴素贝叶斯分类实例:检测SNS社区中不真实账号

下面讨论一个使用朴素贝叶斯分类解决实际问题的例子,为了简单起见,对例子中的数据做了适当的简化。

这个问题是这样的,对于SNS社区来说,不真实账号(使用虚假身份或用户的小号)是一个普遍存在的问题,作为SNS社区的运营商,希望可以检测出这些不真实账号,从而在一些运营分析报告中避免这些账号的干扰,亦可以加强对SNS社区的了解与监管。

如果通过纯人工检测,需要耗费大量的人力,效率也十分低下,如能引入自动检测机制,必将大大提升工作效率。这个问题说白了,就是要将社区中所有账号在真实账号和不真实账号两个类别上进行分类,下面我们一步一步实现这个过程。

首先设C=0表示真实账号,C=1表示不真实账号。

5分类器的评价

虽然后续还会提到其它分类算法,不过这里我想先提一下如何评价分类器的质量。

首先要定义,分类器的正确率指分类器正确分类的项目占所有被分类项目的比率。

通常使用回归测试来评估分类器的准确率,最简单的方法是用构造完成的分类器对训练数据进行分类,然后根据结果给出正确率评估。但这不是一个好方法,因为使用训练数据作为检测数据有可能因为过分拟合而导致结果过于乐观,所以一种更好的方法是在构造初期将训练数据一分为二,用一部分构造分类器,然后用另一部分检测分类器的准确率。

(Via: 张详http://leoo2sk.cnblogs.com/)

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2015-05-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏SIGAI学习与实践平台

怎样成为一名优秀的算法工程师

原创声明:本文为 SIGAI 原创文章,仅供个人学习使用,未经允许,不得转载,不能用于商业目的。

2004
来自专栏玉树芝兰

如何用机器学习处理二元分类任务?

图像是猫还是狗?情感是正还是负?贷还是不贷?这些问题,该如何使用合适的机器学习模型来解决呢?

952
来自专栏机器之心

学界 | 牛津大学ICCV 2017 Workshop论文:利用GAN的单视角图片3D建模技术

选自arXiv 机器之心编译 参与:李泽南 对于现实世界物体的 3D 建模是很多工作中都会出现的任务。目前流行的方法通常需要对于目标物体进行多角度测量,这种方法...

3248
来自专栏AI科技评论

发现 | 基于深度学习的自动上色程序,以及其实际应用

来自伯克利大学和麻省理工学院的三名研究者Richard Zhang、Phillip Isola、Alexei A. Efros日前给出了深度学习在另一个特定领域...

4208
来自专栏AI研习社

自拍抠图抠到手软?详解如何用深度学习消除背景

在机器学习方兴未艾的过去几年里,我一直想要亲自开发具有实用价值且基于机器学习的产品。然后几个月前,在我学习了由 Fast.AI 所提供的深度学习课程之后,我意识...

3644
来自专栏新智元

【技术必备】解读 2016 年十大机器学习算法及其应用

【新智元导读】 机器学习领域都有哪些常用算法?本文带来盘点。 毫无疑问,过去两年中,机器学习和人工智能的普及度得到了大幅提升。 如果你想学习机器算法,要从何下手...

3946
来自专栏小小挖掘机

推荐系统遇上深度学习(十六)--详解推荐系统中的常用评测指标

最近阅读论文的过程中,发现推荐系统中的评价指标真的是五花八门,今天我们就来系统的总结一下,这些指标有的适用于二分类问题,有的适用于对推荐列表topk的评价。

1022
来自专栏IT派

谷歌发布MobileNetV2:可做语义分割的下一代移动端计算机视觉架构

项目链接:https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilen...

750
来自专栏企鹅号快讯

漫谈语音合成之Char2Wav模型

漫谈语音合成之Char2Wav模型 语音合成是指将文本转化成音频的过程,整个过程的难点可以用两个词语来形容:清晰度(Intelligibility)和自然度(N...

2809
来自专栏机器之心

学界 | 面向工程师的机器学习简介:理论、算法、概念全覆盖

选自arXiv 机器之心编译 参与:Panda、蒋思源、黄小天 人工智能技术已经成为当前技术变革的主要推动力之一,从计算机科学到工程学等许多科学技术领域都在竭尽...

28610

扫码关注云+社区