专栏首页AI科技评论AI NEXT | 微软黄学东:微软在很多AI领域领先Google

AI NEXT | 微软黄学东:微软在很多AI领域领先Google

AI科技评论按:本月 18 日,由美中技术与创新协会(Association of Technology and Innovation,ATI)主办的第一届“AI NEXT”大会在西雅图召开。本次会议的主要嘉宾包括:微软首席 AI 科学家邓力,微软院士黄学东,Uber 深度学习负责人 Luming Wang 等。华人之外,还有亚马逊 Alexa 首席科学家 Nikko Strom,微软小娜架构师 Savas Parastatidis 等业内知名专家。

大会主题是“探索 AI 的潜力,把 AI 技术应用于实用项目和服务”,对 CV、NLP、智能助手、深度学习框架均做了专题报告。微软首席语音科学家黄学东也发表了演讲,对微软的人工智能业务和进展做了全面的介绍和梳理。AI科技评论根据演讲录音和PPT整理成文。

AI科技评论注: 黄学东于1993年加入微软,目前领导微软在美国、德国、埃及、以色列的团队研发研发微软企业人工智能客服对话解决方案 、cris.ai 和 luis.ai 等认知服务、CNTK 开源深度学习工具等人工智能产品和技术。2017年2月,黄学东刚刚被评为“微软全球技术院士”,这代表着微软技术人员的最高荣誉。

微软的AI业务简介

其实,“人工智能(Artificial Intelligence)”一词最初是在1956年DARTMOUTH学会上提出的,但是为何一直到如今人工智能技术才步入快速发展的轨道?黄学东认为,主要是两方面的原因:海量的数据,以及计算能力的大幅提升。目前,人工智能主要集中在视觉、语音、语言和知识(图谱)四个领域,但是未来计算机将能够理解这个世界。

根据黄学东的介绍, 目前微软的AI业务可以分成代理(Agent)、应用( Application)、服务(Service)、基础设施(Infrastructure)这四大块。

  • 代理:Cortana(中文名:微软小娜)、微软小冰、Toronto Project(客服助手)
  • 应用:Office 365、Dynamicas 365(整合CRM和ERP的云服务解决方案)、SwiftKey(输入法)、Pix(拍照软件)
  • 服务 :聊天机器人框架(Bot Framework)、认知服务(Cognitive Services)、Cortana智能、认知工具包(Cognitive Toolkit)
  • 基础设施:适用于机器学习的Azure 、Azure N Series(GPU + FPGA)、FGPA(现场可编程门阵列)

计算机语言技术的发展史

  • 1954年,IBM和乔治城大学首次展示了能力非常有限的机器翻译系统。
  • 1966年,John Pierce发布了一份关于“语言技术”非常关键的报告。
  • 1975年——1986年,美国政府没有任何拨款支持机器翻译或者语音识别,发展陷入停滞。
  • 1985年,“共同任务(common task)”方法的出现,研究人员开始共享数据。
  • 2007年,基于统计学谷歌的翻译上线。
  • 2011年,Siri登陆iPhone。
  • 2016年,微软的语音识别系统的达到人类水平,同年谷歌发布支持8种语言的神经网络翻译系统。

虽然目前神经网络翻译系统还经常闹出各种笑话,但是黄学东认为,在未来几年内,计算机的翻译水平有可能会和目前的语音识别一样,达到人类(专家)的水平。

微软在语音识别领域的成就

黄学东在演讲中提到,微软于1991建立了Research Lab,该实验室的愿景是让计算机具备“看(see)、听(listen)、说(speak)”的能力。1993年,微软成立语音小组(Speech Group),希望能够让人与设备之间的语音交流成为主流。而如今,这一愿景正在实现。黄学东在演讲中特别提到了《经济学人》今年1月份的封面文章——“Now we're talking”,该文章认为语音技术让计算机不那么令人生畏,而且更易接近。

黄学东称,1993年的时候,他们做的语音对话识别的词错率(word error rate,简称WER)高达80%。然而2016年9月14日,由黄学东带领的微软语音团队在产业标准Switchboard语音识别基准测试中,实现词错率低至6.3%的这一技术突破,这比IBM的6.6%词错率更低,达到目语音识别领域错误率最低的水平。仅仅一个月后的10月18日,黄学东团队进一步将词错率降低至 5.9%,首次与专业速记员持平。

这个人类水平的对话语音识别系统用到了10个不同的DNN(深度神经网络)。据AI科技评论了解,其具体实现过程是:首先用包括了ResNet(残差网络)、LSTM(长短期记忆网络)在内的6个不同的神经网络组合并行工作,其结果再通过4个新的神经网络组合之后再输出,最终达到专业速记员的水平。

但是黄学东表示,目前计算机的对语音的识别还只停留在转录阶段,想要真正理解语义还非常困难。

微软客服助手Toronto

黄学东表示,语音技术除了能够用作娱乐用途之外,还能够做很专业的事,比如技术支撑(technical support)。它在演讲中提到,微软除了语音助手Cortana和聊天机器人小冰之外,还有一个代号为“Toronto”的客服助手项目。

Toronto是基于深度强化学习的人工智能,能够理解对话中的上下文,让客服聊天机器人更加人性化、更加高效。

根据PPT的介绍,Toronto不仅能自动回复,给出建议,还能在解答不了时提示用户转接人工服务。此外,它还能帮助人工客服快速了解用户信息,给出回答建议,并可以转接给其他的工作人员,甚至还有录音功能。

当然,黄学东也表示,这些聊天助手和语音识别不一样,并没有一个已经建立起来的有效训练方法(established recipe)。

微软在深度学习方面的进展

黄学东此前曾表示,微软的深度学习工具包CNTK其实比谷歌的TensorFlow开源的要早,但是由于一开始 并不是发布在GitHub上,所以外界知道的人相对少一些。但是黄学东表示,根据基准测试的结果,CNTK比谷歌的TensorFlow和亚马逊的MxNet的性能要更好:相同条件下,CNTK每秒能够处理的样本更多。

此外,黄学东还列举了ComputerWorld今年2月的评测结果,来证明微软在深度学习方面的实力。从图中可以看出,微软认知工具包(Cognitive Toolkit)v2.0 beta 1版本在性能、开发的难易程度、以及部署的难易程度这三个方面表现突出,而综合表现仅次于谷歌的TensorFlow r0.10。

微软认知工具包的优势

目前,微软认知服务的API主要包括语言、语音、机器学习、视觉、搜索、知识这几大类。据黄学东介绍,微软的认知工具包有以下三大优势:

  • 速度&可扩展性:微软认知工具包训练和评估深度学习算法比其他的工具包都快,而且可以在不同的环境下有效扩展的同时保持精度。
  • 商业级的质量:使用了复杂的算法以及大量的数据集。
  • 兼容性:可以使用C++、Python等语言,而且能够定制内置训练算法,甚至使用自己的算法。

本文分享自微信公众号 - AI科技评论(aitechtalk),作者:周翔

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-03-28

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 对话微软黄学东:语音语言技术是镶在 AI 皇冠上的明珠

    AI 科技评论按:上一次你和你的电脑进行有意义的对话,并感受到它能真正地理解你,是什么时候?如果微软技术研究员、微软的语言语音小组组长黄学东博士做到了的话,那么...

    AI科技评论
  • 当 AI 开始学习艺术创作,我们应该觉得担心吗?

    AI 科技评论按:随着深度学习爆发式的成功,算法渐渐的被引入了一个人类认为相对安全的领域 —— 创造引人注目的艺术。

    AI科技评论
  • 动态 | 语音识别如何突破延迟瓶颈?谷歌推出了基于 RNN-T 的全神经元设备端语音识别器

    AI 科技评论按:在近二十年来,尤其是引入深度学习以后,语音识别取得了一系列重大突破,并一步步走向市场并搭载到消费级产品中。然而在用户体验上,「迟钝」可以算得上...

    AI科技评论
  • 微软黄学东:微软在很多AI领域领先Google | AI NEXT

    AI 研习社按:本月 18 日,由美中技术与创新协会(Association of Technology and Innovation,ATI)主办的第一届“A...

    AI研习社
  • 黄学东:微软“全武功”解决企业会议的痛点

    新智元
  • 对话微软黄学东:语音和语言技术是真正镶在AI皇冠上的明珠

    已经在语音和语言技术领域耕耘了30年,取得多个突破性进展的微软全球技术院士 (Technical Fellow)、首席语音科学家黄学东先生如此说道。

    新智元
  • vue项目小点(一)

    遍历一个list列表,添加touchstart和touchend事件,并添加删除按钮。如果滑动就添加move类样式,向左滑动60px。

    生南星
  • 为何众多企业都选择腾讯云服务器 原因是?

    说起这“云”呐,现在可是最流行的东西,而我们公司最近也在考虑“上云”,但却陷入了“选择困难症”。

    用户6570390
  • [PHP] 检测文件是否有病毒的实现逻辑

    在用户收到发送过来的文件后 , 要能够检测出这个文件是否是病毒 , 核心的软件是clamav , 可以在linux命令行执行,检测文件或目录里的病毒

    陶士涵
  • 10分钟学会理解和解决MySQL乱码问题

    本文将详细介绍MySQL乱码的成因和具体的解决方案。在阅读本文之前,强烈建议对字符集编码概念还比较模糊的同学 阅读下博主之前对相关概念的一篇科普:十分钟搞清字符...

    小小科

扫码关注云+社区

领取腾讯云代金券