重磅 | Yann LeCun清华演讲:讲述深度学习与人工智能的未来

半个月前,Yann LeCun要来清华演讲的消息在国内AI圈一经传开,各位AI界人士便坐不住了。作为Facebook人工智能研究院院长、纽约大学终身教授、卷积神经网络之父,LeCun已然成为了AI人心目中的男神。

演讲当天(3月22日),AI科技评论也来到了LeCun的演讲现场。演讲开始前,只见许多想要听演讲,却无奈没有得到票的同学,焦急地坚守在演讲大厅门前,希望能一睹男神风采,或运气爆棚能偶得一票。一个专业性质极强的学术演讲能吸引这么多人来参加,也再一次体现了Yann LeCun的个人魅力和在AI界的影响力。也许是被莘莘学子们热爱学习的精神所打动,最后,工作人员临时加开了演讲大厅的二楼,让许多没有票的同学也能进入大厅,最后现场可谓是座无虚席。

Yann LeCun此次演讲由清华大学经济管理学院发起,清华 x-lab、Facebook 共同主办,作为《创新与创业:硅谷洞察》课程的第一节公开课的演讲者,昨日,LeCun为大家带来的演讲题目为《深度学习与人工智能的未来》。

这两年,提起AI一定绕不开的一个话题就是AlphaGo。演讲刚开始,LeCun也以这个大家熟知的事件说起,随即引出一个问题:

“当有大量可用样本(比如桌椅、猫狗、和人)时,训练机器没有问题;但如果机器从来没有见过这些实物,它还能识别出样本吗?”

带着这个问题,LeCun开始了当天的演讲。

演讲中,LeCun带大家回顾了神经网络的发展历程,并以身边的小故事为例,讲述了神经网络发展在早期被受质疑,遭遇重重瓶颈,而在当下则是备受好评、突破不断,他向大家展示了在这两个阶段,人们对神经网络截然不同的看法。

接着,LeCun讲到,如今,AI发展的一大难题就是怎么样才能让机器掌握人类常识。掌握人类常识是让机器和人类自然互动的关键。想要做到这一点,它需要拥有一个内在模型,以具备预测的能力。LeCun用一个公式简洁地概括了这种人工智能系统:预测+规划=推理。而研究人员现在要做的,就是不需依赖人类训练,让机器学会自己构建这个内在模型。

除了AI发展的困境,LeCun还和大家分享了神经网络当下的研究进展。

如今,深度卷积网络已可用于解决包括目标识别在内的各类计算机视觉问题。并且,随着网络深度不断增加,还出现了可用于图像识别、语义分割、ADAS 等众多场景的新型深度卷积神经网络结构,如VGG、GoogLeNet、ResNet 等。

LeCun在演讲中还特别提到Facebook人工智能研究院的最新研究成果——通用目标分割框架 Mask R-CNN,并展示了该框架在 COCO 数据集上的结果(详细内容请参见AI科技评论报道Facebook 最新论文:Mask R-CNN实例分割通用框架,检测,分割和特征点定位一次搞定(多图))。

最后,LeCun还为大家带来了一系列技术干货:具体讲解了对抗训练中的深度卷积对抗生成网络 (DCGAN)和基于能量的对抗生成网络(EBGAN),还提到了语义分割的视频预测技术,并向大家展示了时间预测结果。

演讲一结束,同学们迫不及待地涌上前去,向LeCun提出自己的疑问。LeCun也对每个同学的问题做出了详细解答,令同学们收获良多。

而对近日腾讯围棋 AI 绝艺夺冠这一消息,LeCun也表示非常欣喜,并且AI在ADAS、医疗等领域的发展。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-03-23

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

业界 | 机器阅读理解打破人类记录,解读阿里iDST SLQA技术

29010
来自专栏新智元

论当下机器学习的根本局限 | 一个万能算法会让工程师都失业吗?

2016年10月18日, 世界人工智能大会技术分论坛,特设“新智元智库院长圆桌会议”,重量级研究院院长 7 剑下天山,汇集了中国人工智能产学研三界最豪华院长阵容...

3897
来自专栏思影科技

Neuron:人类个体大脑的精准功能成像

来自美国德州VISN 17 Center of Excellence的Evan M. Gordon等人在Neuron期刊上发文,主要介绍了其提供的MSC数据集,...

2736
来自专栏机器之心

深度 | 谷歌和OpenAI新研究:如何使用达尔文进化论辅助设计人工智能算法?

选自QZ 作者:Dave Gershgorn 机器之心编译 参与:吴攀、黄小天、李亚洲 现代机器智能建立在模仿自然的基础之上——这一领域的主要目的是在计算机中复...

35714
来自专栏AI研习社

未来 3-5 年内,哪个方向的机器学习人才最紧缺?

既然已经身在工业届,那么我就谈谈工业界未来几年需要什么样的机器学习人才。不谈学术界主要还是因为大部分人最终不会从事研究,而会奋斗在应用领域。相较而言,工业界对人...

2636
来自专栏大数据文摘

当代最伟大数学家讲述二十世纪的数学

2038
来自专栏AI研习社

【AI听】微软刷新了SQuAD记录!聊天机器人居然懂人类情感?谷歌大脑「神经网络优化器搜索」又双叒叕更新……

本周关键词 SQuAD|聊天机器人 计算机视觉|谷歌大脑 主播 | 吴璇 NO/1 上周,微软又刷新了SQuAD记录... 今年7月,斯坦福大学发起的SQuA...

36911
来自专栏新智元

【NIPS挑战赛优胜解】用机器学习判断基因变异所属类别

【新智元导读】在刚刚结束的 NIPS Challenge on Predicting the Genetic Variants to Enable Precis...

3496
来自专栏AI科技大本营的专栏

专访王威廉:NLP哪些研究方向更容易取得突破?

自然语言处理(NLP)是一门集语言学、计算机科学、人工智能于一体的科学,解决的是“让机器可以理解自然语言”——这一到目前为止都还只是人类独有的特权,因此被誉为人...

683
来自专栏机器之心

资源 | 《深度强化学习》手稿开放了!

《深度强化学习》希望帮助初学者了解深度强化学习,也希望为教授、研究人员、学生、工程师、管理人员、投资者等广大读者提供一份深度强化学习参考资料。

842

扫码关注云+社区