阿里天池大数据竞赛实战:RF&GBRT 完成过程

一点比赛心得,供不太熟悉Xlab RF和GBRT调用的同学参考,不喜勿喷,大神绕道----------

6月初的时候LR 做到4.9后一直上不去,看群里火热的讨论RF,转而使用RF,几经折腾上手后,在当时的那批对LR来说很好的特征处理下,结果F1只有3.5左右,心灰意冷。。。然后又看到火热讨论GBRT,再转gbrt,刚上手,效果和RF差不多,看到别的同学直接从LR转到RF和GBRT都效果好很多,那个急啊,然后又是考试周,就一直拖拉到6月下旬,终于下定决心重新做一遍,因为gbrt训练时间比较长,且RF和GBRT对特征的效果相当,RF预测时间相对较短一些,便重新做RF,慢慢的有效果了,停止了F1终于开始往上涨:4.9->5.16->5.66...最近开始再添加特征,相信还会有提升,下面把我们的RF和GBRT的训练和预测方法大概讲一下(主要以截图为主)

1、Xlab GBRT上手

准备

训练的特征表gbrt_offline_section_one_24格式为:user_id,brand_id,feature1,feature2...Label

见下图:

1.2 、建立特征稀疏表,为训练做准备

特征稀疏表可直接在Xlab由原始特征表转换得到,截图如下

进入普通表转稀疏矩阵界面后,在选择列里填上: user_id对应的列号(表默认从0列开始),brand_id对应的列号,以及想要使用的众多特征对应的列号(不需要填写标签对应的列号!!!);然后在输出表里填上转换成的稀疏矩阵:gbrt_offline_section_one_24_1;如下图

1.3 、GBRT训练

利用训练的特征表gbrt_offline_section_one_24,进行GBRT训练,如下图所以

进入配置界面,勾选训练的标签,稀疏矩阵名处输入刚才转好的稀疏矩阵gbrt_offline_section_one_24_1,模型输出表处填写模型输出表名,参数配置处根据效果进行配置(最开始默认就可以的)。如下图所示:

配置好只好就可以进行训练了,等待训练好之后等到GBRT预测模型:gbrt_offline_section_one_25;

1.4、GBRT预测特征表准备

训练的特征表gbrt_offline_section_two_11格式与训练特征表格式一样,为:user_id, brand_id, feature1, feature2...Label 见下图:

1.5、建立预测稀疏矩阵表

特征稀疏表可直接在Xlab由原始特征表转换得到,方法和原来一样,直接截图如下:

需要注意的是,选择列必须和训练时候一样!!!

1.6、GBRT预测

利用转好的预测稀疏矩阵表gbrt_offline_section_two_11_1进行预测,如下图所示

进入界面如下:model 处填写刚才训练好的GBRT模型表:gbrt_offline_section_one_25;输出表名处填写预测结果输出表 gbrt_offline_section_two_13,然后进行预测,如下图所示:

1.7、GBRT碎碎念

GBRT预测好之后,得到的结果为与原始预测表gbrt_offline_section_two_11一一对应的单列值y_var(搞不懂为什么不提供类似RF那样预测结果追加user_id,brand_id 列),如下图:

所以,还得进行追加ID列,进行zxs_gbrt_offline_section_two_13_1和zxs_gbrt_offline_section_two_11_1两张表的合并,得到类似user_id,brand_id,y_val的表,取阈值进行推荐就可以了,下图为xlab里提供的脚本,追加ID列代码。

另外:附上脚本实现的代码,方便测试:

2、Xlab RF上手

2.1、训练特征表准备

训练的特征表

2.2、RF训练

利用训练的特征表gbrt_offline_section_one_24,进行RF训练,如下图所以

进入配置界面,在Features 框里勾选训练特征以及该特征连续与否,在Class框里目标处选择标签列,模型输出表处填写输出模型表名:gbrt_offline_section_one_25;进一步,点击参数配置选项卡,进入参数配置界面,进行参数配置,我们主要配置了树的棵树,配置好后,进行训练,如下图所示:

训练结束,得到RF模型表gbrt_offline_section_one_25。

2.3、RF预测

利用预测特征表gbrt_offline_section_two_11进行RF预测,如下图所示:

进入配置界面:在结果附加列中添加user_id ,brand_id 列,勾选目标列2分类,主分类为1,这样预测结果表中就会给出预测为1 的概率值,输出信息处填写预测输出表,进行预测,如下图:

预测完成之后即可根据conclusion=1判断预测的正样本,或者根据probability阈值判断(从一位哈工大同学大帅那里得到了如下控制推荐条数的好方法),如下图:

(via: http://blog.csdn.net/u010691898/article/details/37567783)

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2015-07-02

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

教程 | 如何利用TensorFlow.js部署简单的AI版「你画我猜」图像识别应用

我们将使用卷积神经网络(CNN)来识别不同类型的手绘图像。这个卷积神经网络将在 Quick Draw 数据集(https://github.com/google...

2934
来自专栏数据派THU

手把手教你用Keras进行多标签分类(附代码)

本文将通过拆解SmallVGGNet的架构及代码实例来讲解如何运用Keras进行多标签分类。

4.3K9
来自专栏Small Code

sklearn中Logistics Regression的coef_和intercept_的具体意义

使用sklearn库可以很方便的实现各种基本的机器学习算法,例如今天说的逻辑斯谛回归(Logistic Regression),我在实现完之后,可能陷入代码太久...

3346
来自专栏编程

大神级Python工程师是怎么P图的,带你用Python玩转P图

? 1.PIL:Python影像库 PIL或者Python Imaging Library是一个包含许多函数来处理来自Python脚本的图像的包。PIL官方网...

3758
来自专栏腾讯Bugly的专栏

机器学习入门之HelloWorld(Tensorflow)

1 环境搭建 (Windows) 安装虚拟环境 Anaconda,方便python包管理和环境隔离。 Anaconda3 4.2 http://mirrors...

4568
来自专栏CVer

用OpenCV实现图像和视频神经风格迁移(含代码)

2015年,Gatsys等人在论文A Neural Algorithm of Artistic Style中提出了最初的神经风格迁移算法。2016年,Johns...

3693
来自专栏贾志刚-OpenCV学堂

OpenCV中图像算术操作与逻辑操作

在图像处理中有两类最重要的基础操作分别是图像点操作与块操作,简单点说图像点操作就是图像每个像素点的相关逻辑与几何运算、块操作最常见就是基于卷积算子的各种操作、实...

42610
来自专栏AI深度学习求索

CAM实践:基于pytorch的使用方法

注意:如果为了快一点,不使用网络的图片以及文件的话,记得更改图片地址和已下载文件地址哦

2874
来自专栏Python爬虫实战

图片转字符画

字符画是一系列字符的组合,我们可以把字符看作是比较大块的像素,一个字符能表现一种颜色(暂且这么理解吧),字符的种类越多,可以表现的颜色也越多,图片也会更有层次感...

1442
来自专栏磐创AI技术团队的专栏

ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人

简介 ? 还在开发中,它工作的效果还不好。但是你可以直接训练,并且运行。 包含预处理过的 twitter 英文数据集,训练,运行,工具代码,可以运行但是效果有待...

3978

扫码关注云+社区