邓侃解读:医疗关键数据时间序列敏感度分析的通用方法


新智元专栏

作者:邓侃

【新智元导读】密歇根州立大学、康奈尔大学腾讯研究院的几位学者,联名发表了一篇题为 “Identify Susceptible Locations in Medical Records”的论文。这篇文章讲述了如何在病历中找到敏感数据位置,以及如何利用这些关键数据对重症监护中的病人进行保护。新智元专栏作者邓侃博士带来详细解读。

2018年2月13日,来自密歇根州立大学、康奈尔大学腾讯研究院的几位学者,联名在 Arxiv 上发表了一篇题为 “Identify Susceptible Locations in Medical Records” [1]的论文。 这篇文章讲述了如何在病历中找到敏感数据位置,以及如何利用这些关键数据对重症监护中的病人进行保护。

平时大家对自己的医疗数据或许并不怎么关心,面对一大串的字符数字,身为外行基本也看不出个所以然来,更不要说如何用这些数据来救人和自救了。

但这些数据对于医生们而言就十分宝贵了。根据病患的诊疗数据医生们可以对病患的病情走向做出判断,进而给出相应的治疗手段。只不过这些平铺直叙的数据,即使是医生看起来也难免会有一些遗漏,又或者被一些可疑信息干扰。

文章中提到的方法就是要从这些流水账似的数据中找到可疑的“red flag”甚至是潜在的测量误差,去提示医生关注可能遗漏或错误判断的关键信息。

找到这些敏感信息意味着什么?

打个比方,对于病人来说,看医生最在乎的除了身体是否康复外,大概就是花了多少钱了。为了少花钱或是从中赚钱,一些不法分子甚至会进行医保诈骗。

医保诈骗通常把无病说成有病,把小病说成大病。

要做到这一结果其实并不容易。诈骗犯们如果只是篡改诊断结果中的疾病,那必须是行不通的。因为报销审核的时候,一定会核查现病史、化验结果、检查报告等以核对病情描述与诊断结果是否一致。

不妨把住院病历的内容,看成一个时间序列。从入院到出院这一期间每一天的病情描述都是一个矢量,包含各种症状、体征、化验指标、检查标志物,以及诊断、药品、手术、护理等等。

这些数据信息都是连贯的,仅修改结果就像一个错误的数学公式,很容易被发现。

而医保欺诈的目标,是既要尽可能少地改动病历,还得使之支持编纂出来的出院诊断。也就是说,最理想的情况是只改动病历时间序列中某一天某一项病情描述指标,就能使之得到期盼的诊断结果。

反过来说,实际测量时可能存在的小偏差,或者数据中不起眼的一个数值变化就像是这个诈骗犯,小小的变动可能就导致了整个实际预测结果的改变。

要如何才能发现哪个病情指标对诊断结果最重要呢?文章基于这一疑问,便提出了一个“通用的方法”去对时间序列数据中各个时刻各个数值的敏感度做出分析。

如何实现搜寻

1. 首先,我们需要一个诊断模型,输入是病情描述的时间序列,输出结果是罹患各种疾病的概率。

诊断模型的实现方案有很多。最简单的是用 LSTM 模型。

当然也可以用它办法,譬如可以先用 LSTM,把不定长的病情描述的时间序列,转换成定长的张量,然后用 CNN 对定长的张量做分类。

甚至也可以摈弃 LSTM,譬如 Attention,直接在时间序列中捕捉重要的数据,然后根据这些重要数据做分类。

2. 搞定诊断模型以后,接下去对时间序列中每一天的每一项数据,做敏感性分析。

做敏感性分析的办法也很多,最粗暴的办法是穷举。保持时间序列中的其它数据项不变,只改变一项数据,然后把篡改过了的时间序列,输入进诊断模型。然后比较诊断模型的诊断结果,与病历中记录的真实的诊断结果。模型的结果,与真实结果,两者相差越大,说明这一项数据,对诊断结果影响越大。

穷举的办法效率较差,论文提议,用前沿的对抗攻击(Adversarial attack)技术,来快速找到敏感的数据项。

对抗攻击技术的原理,不难懂。由于诊断模型是神经网络,神经网络的各个参数,是通过梯度下降算法确定的。下降梯度越陡,相关的参数对模型的输出影响越大。

3. 为了让敏感性分析的结果,看起来更直观,做一个热力图。

横轴是各项病情指标,纵轴是时间轴,从入院到出院。二维空间中的每一个点,对应着某一天某一项指标,对诊断结果的影响力,用颜色表示影响力。

方法的拓展应用

仔细想想时间序列敏感度分析的三步曲,会发现其实这个方法并不局限于对病历记录的敏感性分析,而就像之前说的,是一个实现对事件序列攻击的通用办法。

站在医保审核的立场,只有懂得了不法分子篡改病例的原理,才能更有针对性地研究如何甄别病历记录中,哪些时间的哪些数据,被人为篡改了。从而更为有效的保障病人以及医疗工作者的权益。

参考文献

1. Identify Susceptible Locations in Medical Records via Adversarial Attacks on Deep Predictive Models.https://arxiv.org/pdf/1802.04822.pdf


原文发布于微信公众号 - 新智元(AI_era)

原文发表时间:2018-03-05

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏美团技术团队

美团点评旅游搜索召回策略的演进

背景 美团点评作为最大的生活服务平台,有丰富的品类可供用户选择,因此搜索这个入口对各业务的重要性不言而喻,除了平台搜索外,业务搜索系统的质量和效果对用户体验、商...

76111
来自专栏程序员的知识天地

用Python自动生成表情包?小学生都能学会的操作!

作为一个数据分析师,应该信奉一句话----"一图胜千言"。不过这里要说的并不是数据可视化,而是一款全民向的产品形态——表情包!!!!

892
来自专栏Data Analysis & Viz

乱炖“简书交友”数据之代码(2)

继续更新出来本系列的代码:乱炖数据之2700余篇“简书交友”专题文章数据的花式玩法

1323
来自专栏CDA数据分析师

逢赌必赢的秘密

本文由CDA作者库成员麻赛原创,并授权发布 原文来自公众号麻大湿讲数据(ID:madashi_data)。 ? 首先是麻大湿的老实交代 这篇文章标题党了,你不能...

4758
来自专栏量子位

凭一张照片找到视频中你所有的镜头,包括背影丨商汤ECCV 2018论文

别担心,商汤可不是准备拍电影,而是提出了新的视频找人方法——也就是,无论一位电影明星演的是青春少女还是白发老人,无论TA露出了正脸还是侧颜,无论影片的镜头明亮鲜...

1190
来自专栏数据的力量

家有2一10岁孩子的赶紧保存,注意力训练,超有用!

训练目的:训练学生学习能力,能使学生上课专心听讲,认真写作业,考试不粗心,提高学习成绩

1092
来自专栏AI科技大本营的专栏

AI 技术讲座精选:数据科学家线性规划入门指南

前 言 生活之道在于优化。每个人拥有的资源和时间都是有限的,我们都想充分利用它们。从有效地利用个人时间到解决公司的供应链问题——处处都有用到优化。 优化还是一个...

3923
来自专栏机器人网

为什么要将超声波感应用于无人机

无人机降落辅助是无人机所具有的一项功能,可以检测无人机底部与着陆区域的距离,判定着陆点是否安全,然后缓慢下降到着陆区域。尽管GPS监测、气压传感和其他传感技术有...

1074
来自专栏思影科技

AJP:青少年饮酒后大脑发育轨迹发生改变

薛老师和他的猫推荐你关注思影科技 来自美国加州SRI国际健康科学中心、斯坦福大学等机构的研究人员联合在The American journal of psych...

3139
来自专栏机器人网

详解:无人机中超声波原理

近年来,消费类无人机越来越受欢迎,多用于拍摄震撼的片段、运送救援物资,多数无人机使用各种传感技术实现自主导航、碰撞检测。而你又是否知道,超声波传感尤其有助于无人...

1082

扫码关注云+社区

领取腾讯云代金券