前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >python实现多变量线性回归(Linear Regression with Multiple Variables)

python实现多变量线性回归(Linear Regression with Multiple Variables)

作者头像
JadePeng
发布2018-03-12 15:56:39
2.3K0
发布2018-03-12 15:56:39
举报

本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记

现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,...,xn)

表示为:

引入 x0=1,则公式 转化为:

1、加载训练数据

数据格式为:

X1,X2,Y

2104,3,399900

1600,3,329900

2400,3,369000

1416,2,232000

将数据逐行读取,用逗号切分,并放入np.array

#加载数据

代码语言:javascript
复制
#加载数据
def load_exdata(filename):
    data = []
    with open(filename, 'r') as f:
        for line in f.readlines(): 
            line = line.split(',')
            current = [int(item) for item in line]
            #5.5277,9.1302
            data.append(current)
    return data

data = load_exdata('ex1data2.txt');
data = np.array(data,np.int64)

x = data[:,(0,1)].reshape((-1,2))
y = data[:,2].reshape((-1,1))
m = y.shape[0]

# Print out some data points
print('First 10 examples from the dataset: \n')
print(' x = ',x[range(10),:],'\ny=',y[range(10),:])

First 10 examples from the dataset:

x = [[2104 3]

[1600 3]

[2400 3]

[1416 2]

[3000 4]

[1985 4]

[1534 3]

[1427 3]

[1380 3]

[1494 3]]

y= [[399900]

[329900]

[369000]

[232000]

[539900]

[299900]

[314900]

[198999]

[212000]

[242500]]

2、通过梯度下降求解theta

 (1)在多维特征问题的时候,要保证特征具有相近的尺度,这将帮助梯度下降算法更快地收敛。

解决的方法是尝试将所有特征的尺度都尽量缩放到-1 到 1 之间,最简单的方法就是(X - mu) / sigma,其中mu是平均值, sigma 是标准差。

(2)损失函数和单变量一样,依然计算损失平方和均值

我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。多变量线性回归的批量梯度下降算法为:

求导数后得到:

(3)向量化计算

向量化计算可以加快计算速度,怎么转化为向量化计算呢?

在多变量情况下,损失函数可以写为:

对theta求导后得到:

(1/2*m) * (X.T.dot(X.dot(theta) - y))

因此,theta迭代公式为:

theta = theta - (alpha/m) * (X.T.dot(X.dot(theta) - y))

(4)完整代码如下:

代码语言:javascript
复制
#特征缩放
def featureNormalize(X):
    X_norm = X;
    mu = np.zeros((1,X.shape[1]))
    sigma = np.zeros((1,X.shape[1]))
    for i in range(X.shape[1]):
        mu[0,i] = np.mean(X[:,i]) # 均值
        sigma[0,i] = np.std(X[:,i])     # 标准差
#     print(mu)
#     print(sigma)
    X_norm  = (X - mu) / sigma
    return X_norm,mu,sigma

#计算损失
def computeCost(X, y, theta):
    m = y.shape[0]
#     J = (np.sum((X.dot(theta) - y)**2)) / (2*m) 
    C = X.dot(theta) - y
    J2 = (C.T.dot(C))/ (2*m)
    return J2

#梯度下降
def gradientDescent(X, y, theta, alpha, num_iters):
    m = y.shape[0]
    #print(m)
    # 存储历史误差
    J_history = np.zeros((num_iters, 1))
    for iter in range(num_iters):
        # 对J求导,得到 alpha/m * (WX - Y)*x(i), (3,m)*(m,1)  X (m,3)*(3,1) = (m,1)
        theta = theta - (alpha/m) * (X.T.dot(X.dot(theta) - y))
        J_history[iter] = computeCost(X, y, theta)
    return J_history,theta
    

iterations = 10000  #迭代次数
alpha = 0.01    #学习率
x = data[:,(0,1)].reshape((-1,2))
y = data[:,2].reshape((-1,1))
m = y.shape[0]
x,mu,sigma = featureNormalize(x)
X = np.hstack([x,np.ones((x.shape[0], 1))])
# X = X[range(2),:]
# y = y[range(2),:]

theta = np.zeros((3, 1))

j = computeCost(X,y,theta)
J_history,theta = gradientDescent(X, y, theta, alpha, iterations)


print('Theta found by gradient descent',theta)

Theta found by gradient descent [[ 109447.79646964]

[ -6578.35485416]

[ 340412.65957447]]

绘制迭代收敛图

plt.plot(J_history)

plt.ylabel('lost');

plt.xlabel('iter count')

plt.title('convergence graph')

使用模型预测结果

代码语言:javascript
复制
def predict(data):
    testx = np.array(data)
    testx = ((testx - mu) / sigma)
    testx = np.hstack([testx,np.ones((testx.shape[0], 1))])
    price = testx.dot(theta)
    print('price is %d ' % (price))

predict([1650,3])

price is 293081

no bb,上代码,代码下载

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017-02-17 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档