python实现多变量线性回归(Linear Regression with Multiple Variables)

本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记

现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,...,xn)

表示为:

引入 x0=1,则公式 转化为:

1、加载训练数据

数据格式为:

X1,X2,Y

2104,3,399900

1600,3,329900

2400,3,369000

1416,2,232000

将数据逐行读取,用逗号切分,并放入np.array

#加载数据

#加载数据
def load_exdata(filename):
    data = []
    with open(filename, 'r') as f:
        for line in f.readlines(): 
            line = line.split(',')
            current = [int(item) for item in line]
            #5.5277,9.1302
            data.append(current)
    return data

data = load_exdata('ex1data2.txt');
data = np.array(data,np.int64)

x = data[:,(0,1)].reshape((-1,2))
y = data[:,2].reshape((-1,1))
m = y.shape[0]

# Print out some data points
print('First 10 examples from the dataset: \n')
print(' x = ',x[range(10),:],'\ny=',y[range(10),:])

First 10 examples from the dataset:

x = [[2104 3]

[1600 3]

[2400 3]

[1416 2]

[3000 4]

[1985 4]

[1534 3]

[1427 3]

[1380 3]

[1494 3]]

y= [[399900]

[329900]

[369000]

[232000]

[539900]

[299900]

[314900]

[198999]

[212000]

[242500]]

2、通过梯度下降求解theta

 (1)在多维特征问题的时候,要保证特征具有相近的尺度,这将帮助梯度下降算法更快地收敛。

解决的方法是尝试将所有特征的尺度都尽量缩放到-1 到 1 之间,最简单的方法就是(X - mu) / sigma,其中mu是平均值, sigma 是标准差。

(2)损失函数和单变量一样,依然计算损失平方和均值

我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。多变量线性回归的批量梯度下降算法为:

求导数后得到:

(3)向量化计算

向量化计算可以加快计算速度,怎么转化为向量化计算呢?

在多变量情况下,损失函数可以写为:

对theta求导后得到:

(1/2*m) * (X.T.dot(X.dot(theta) - y))

因此,theta迭代公式为:

theta = theta - (alpha/m) * (X.T.dot(X.dot(theta) - y))

(4)完整代码如下:

#特征缩放
def featureNormalize(X):
    X_norm = X;
    mu = np.zeros((1,X.shape[1]))
    sigma = np.zeros((1,X.shape[1]))
    for i in range(X.shape[1]):
        mu[0,i] = np.mean(X[:,i]) # 均值
        sigma[0,i] = np.std(X[:,i])     # 标准差
#     print(mu)
#     print(sigma)
    X_norm  = (X - mu) / sigma
    return X_norm,mu,sigma

#计算损失
def computeCost(X, y, theta):
    m = y.shape[0]
#     J = (np.sum((X.dot(theta) - y)**2)) / (2*m) 
    C = X.dot(theta) - y
    J2 = (C.T.dot(C))/ (2*m)
    return J2

#梯度下降
def gradientDescent(X, y, theta, alpha, num_iters):
    m = y.shape[0]
    #print(m)
    # 存储历史误差
    J_history = np.zeros((num_iters, 1))
    for iter in range(num_iters):
        # 对J求导,得到 alpha/m * (WX - Y)*x(i), (3,m)*(m,1)  X (m,3)*(3,1) = (m,1)
        theta = theta - (alpha/m) * (X.T.dot(X.dot(theta) - y))
        J_history[iter] = computeCost(X, y, theta)
    return J_history,theta
    

iterations = 10000  #迭代次数
alpha = 0.01    #学习率
x = data[:,(0,1)].reshape((-1,2))
y = data[:,2].reshape((-1,1))
m = y.shape[0]
x,mu,sigma = featureNormalize(x)
X = np.hstack([x,np.ones((x.shape[0], 1))])
# X = X[range(2),:]
# y = y[range(2),:]

theta = np.zeros((3, 1))

j = computeCost(X,y,theta)
J_history,theta = gradientDescent(X, y, theta, alpha, iterations)


print('Theta found by gradient descent',theta)

Theta found by gradient descent [[ 109447.79646964]

[ -6578.35485416]

[ 340412.65957447]]

绘制迭代收敛图

plt.plot(J_history)

plt.ylabel('lost');

plt.xlabel('iter count')

plt.title('convergence graph')

使用模型预测结果

def predict(data):
    testx = np.array(data)
    testx = ((testx - mu) / sigma)
    testx = np.hstack([testx,np.ones((testx.shape[0], 1))])
    price = testx.dot(theta)
    print('price is %d ' % (price))

predict([1650,3])

price is 293081

no bb,上代码,代码下载

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏宏伦工作室

用自编码器进行图像去噪

1094
来自专栏IT派

经典!构建你的第一个神经网络识别数字

在Keras环境下构建多层感知器模型,对数字图像进行精确识别。模型不消耗大量计算资源,使用了cpu版本的keras,以Tensorflow 作为backende...

3435
来自专栏机器人网

强大的卷积网络是如何运行?

首先,卷积网络认知图像的方式不同于人类。因此,在图像被卷积网络采集、处理时,需要以不同方式思考其含义。 卷积网络将图像视为体,也即三维物体,而非仅用宽度和高度测...

2658
来自专栏派森公园

机器学习101(译)

1857
来自专栏人工智能

具有张量流的混合密度网络

不久之前,Google开源了TensorFlow,这是一个旨在简化图表计算的库。 主要的应用程序是针对深度学习,将神经网络以图形形式显示。 我花了几天的时间阅读...

3576
来自专栏人工智能

深入机器学习系列12-高斯混合模型

高斯混合模型   现有的高斯模型有单高斯模型()和高斯混合模型()两种。从几何上讲,单高斯分布模型在二维空间上近似于椭圆,在三维空间上近似于椭球。在很多情况下,...

2119
来自专栏AI研习社

一篇文章教你用 11 行 Python 代码实现神经网络

编者按:本文作者陶言祺,原文载于作者个人博客,雷锋网 AI 研习社已获授权。 声明:本文是根据英文教程 A Neural Network in 11 lines...

35616
来自专栏jeremy的技术点滴

tensorflow学习笔记_02

3034
来自专栏杂七杂八

LogisticRegression实验

实验目的 了解logistic regression的原理及在sklearn中的使用 实验数据 鸢尾花数据集是由杰出的统计学家R.A.Fisher在20世纪30...

3254
来自专栏Brian

深度学习笔记-浅层神经网络

---- 浅层神经网络 什么是浅层神经网络,我们看一下下面这个图: ? 分为如下: 1.Input Layer 2.Hidden Layer 3.Outpu...

3835

扫描关注云+社区