学习
实践
活动
专区
工具
TVP
写文章
专栏首页美团技术团队美团技术团队博客:Kafka文件存储机制那些事

美团技术团队博客:Kafka文件存储机制那些事

Kafka是什么

Kafka最初由Linkedin公司开发,是一个分区、多副本、多订阅者、且基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常用于web/nginx日志、访问日志,消息服务等,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目。

1.前言

一个商业化消息队列文件存储机制设计,是衡量其技术水平的关键指标之一。 下面将从Kafka文件存储机制和物理结构角度,分析Kafka如何实现高效文件存储,及实际应用效果。

2.Kafka文件存储机制

Kafka部分名词解释如下:

  • Broker:消息中间件处理结点,一个Kafka节点就是一个broker,多个broker可以组成一个Kafka集群。
  • Topic:一类消息,例如page view日志、click日志等都可以以topic的形式存在,Kafka集群能够同时负责多个topic的分发。
  • Partition:topic物理上的分组,一个topic可以分为多个partition,每个partition是一个有序的队列。
  • Segment:partition物理上由多个segment组成,下面2.2和2.3有详细说明。

分析过程分为以下4个步骤:

  1. topic中partition存储分布
  2. partiton中文件存储方式
  3. partiton中segment文件存储结构
  4. 在partition中如何通过offset查找message

通过上述4过程详细分析,我们就可以清楚认识到kafka文件存储机制的奥秘。

2.1 topic中partition存储分布

假设实验环境中Kafka集群只有一个broker,xxx/message-folder为数据文件存储根目录,在Kafka broker中server.properties文件配置(参数log.dirs=xxx/message-folder),例如创建2个topic名称分别为report_push、launch_info, partitions数量都为partitions=4 存储路径和目录规则为: xxx/message-folder

          |--report_push-0
              |--report_push-1
              |--report_push-2
              |--report_push-3
              |--launch_info-0
              |--launch_info-1
              |--launch_info-2
              |--launch_info-3

在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。 如果是多broker分布情况,请参考kafka集群partition分布原理分析

2.2 partiton中文件存储方式

下面示意图形象说明了partition中文件存储方式:

图1

  • 每个partion(目录)相当于一个巨型文件被平均分配到多个大小相等segment(段)数据文件中。但每个段segment file消息数量不一定相等,这种特性方便old segment file快速被删除。
  • 每个partiton只需要支持顺序读写就行了,segment文件生命周期由服务端配置参数决定。

这样做的好处是快速删除无用文件,有效提高磁盘利用率。

2.3 partiton中segment文件存储结构

读者从2.2节了解到Kafka文件系统partition存储方式,本节深入分析partion中segment file组成和物理结构。

  • segment file组成:由2大部分组成,分别为index file和data file,此2个文件一一对应,成对出现,后缀".index"和“.log”分别表示为segment索引文件、数据文件.
  • segment文件命名规则:partion全局的第一个segment从0开始,后续每个segment文件名为上一个全局partion的最大offset(偏移message数)。数值最大为64位long大小,19位数字字符长度,没有数字用0填充。

下面文件列表是笔者在Kafka broker上做的一个实验,创建一个topicXXX包含1 partition,设置每个segment大小为500MB,并启动producer向Kafka broker写入大量数据,如下图2所示segment文件列表形象说明了上述2个规则:

图2

以上述图2中一对segment file文件为例,说明segment中index<—->data file对应关系物理结构如下:

图3

上述图3中索引文件存储大量元数据,数据文件存储大量消息,索引文件中元数据指向对应数据文件中message的物理偏移地址。 其中以索引文件中元数据3,497为例,依次在数据文件中表示第3个message(在全局partiton表示第368772个message)、以及该消息的物理偏移地址为497。

从上述图3了解到segment data file由许多message组成,下面详细说明message物理结构如下:

图4

参数说明:

关键字

解释说明

8 byte offset

在parition(分区)内的每条消息都有一个有序的id号,这个id号被称为偏移(offset),它可以唯一确定每条消息在parition(分区)内的位置。即offset表示partiion的第多少message

4 byte message size

message大小

4 byte CRC32

用crc32校验message

1 byte “magic"

表示本次发布Kafka服务程序协议版本号

1 byte “attributes"

表示为独立版本、或标识压缩类型、或编码类型。

4 byte key length

表示key的长度,当key为-1时,K byte key字段不填

K byte key

可选

value bytes payload

表示实际消息数据。

2.4 在partition中如何通过offset查找message

例如读取offset=368776的message,需要通过下面2个步骤查找。

  1. 查找segment file 上述图2为例,其中00000000000000000000.index表示最开始的文件,起始偏移量(offset)为0.第二个文件00000000000000368769.index的消息量起始偏移量为368770 = 368769 + 1.同样,第三个文件00000000000000737337.index的起始偏移量为737338=737337 + 1,其他后续文件依次类推,以起始偏移量命名并排序这些文件,只要根据offset **二分查找**文件列表,就可以快速定位到具体文件。 当offset=368776时定位到00000000000000368769.index|log
  2. 通过segment file查找message 通过第一步定位到segment file,当offset=368776时,依次定位到00000000000000368769.index的元数据物理位置和00000000000000368769.log的物理偏移地址,然后再通过00000000000000368769.log顺序查找直到offset=368776为止。

从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。

3. Kafka文件存储机制–实际运行效果

实验环境:

  • Kafka集群:由2台虚拟机组成
  • cpu:4核
  • 物理内存:8GB
  • 网卡:千兆网卡
  • jvm heap: 4GB
  • 详细Kafka服务端配置及其优化请参考:kafka server.properties配置详解

图5

从上述图5可以看出,Kafka运行时很少有大量读磁盘的操作,主要是定期批量写磁盘操作,因此操作磁盘很高效。这跟Kafka文件存储中读写message的设计是息息相关的。Kafka中读写message有如下特点:

写message

  • 消息从java堆转入page cache(即物理内存)。
  • 由异步线程刷盘,消息从page cache刷入磁盘。

读message

  • 消息直接从page cache转入socket发送出去。
  • 当从page cache没有找到相应数据时,此时会产生磁盘IO,从磁 盘Load消息到page cache,然后直接从socket发出去

4.总结

Kafka高效文件存储设计特点

  • Kafka把topic中一个parition大文件分成多个小文件段,通过多个小文件段,就容易定期清除或删除已经消费完文件,减少磁盘占用。
  • 通过索引信息可以快速定位message和确定response的最大大小。
  • 通过index元数据全部映射到memory,可以避免segment file的IO磁盘操作。
  • 通过索引文件稀疏存储,可以大幅降低index文件元数据占用空间大小。

参考

1.Linux Page Cache机制 2.Kafka官方文档

文章分享自微信公众号:
美团点评技术团队

本文参与 腾讯云自媒体分享计划 ,欢迎热爱写作的你一起参与!

作者:悠悠香草
原始发表时间:2015-01-14
如有侵权,请联系 cloudcommunity@tencent.com 删除。
登录 后参与评论
0 条评论

相关文章

  • Kafka在美团数据平台的实践

    总第526篇 2022年 第043篇 Kafka在美团数据平台承担着统一的数据缓存和分发的角色,随着数据量的增长,集群规模的扩大,Kafka面临的挑战也愈发严...

    美团技术团队
  • Spark/Flink/CarbonData技术实践最佳案例解析

    当前无论是传统企业还是互联网公司对大数据实时分析和处理的要求越来越高,数据越实时价值越大,面向毫秒~ 秒级的实时大数据计算场景,Spark 和 Flink 各有...

    王知无-import_bigdata
  • Gdevops北京站:邀你开启运维与数据库的一年之“技”

    经过潜心打磨,结合行业热点 2019年度Gdevops全球敏捷运维峰会 将于5月10日以北京为起点强势启动 展开新一年精彩纷呈的技术巡演! 关于Gdevops...

    腾讯大讲堂
  • Java架构师如何冲击年薪40w

    美的让人心动
  • 社招两年半10个公司28轮面试面经

    还有一个点是,看书的时候可以尝试记一下笔记,这样效率会高一些,不至于看完就忘记了。

    CoderW
  • Java开发5年,四面美团(多线程+redis+JVM+数据库),终拿offer!

    Java开发五年多.投递阿里、腾讯、头条、美团、京东等各互联网公司的高级Java岗位,最终得到了美团的面试机会,并成功拿下美团高级Java岗的offer。美团J...

    程序员追风
  • 大数据平台演进之路 | 淘宝 & 滴滴 & 美团

    声明:本文参考了淘宝/滴滴/美团发表的关于大数据平台建设的文章基础上予以整理。参考链接和作者在文末给出。

    王知无-import_bigdata
  • 美团图数据库平台建设及业务实践

    大家好,我是来自美团的赵登昌,今天我给大家分享下美团图数据库平台的建设以及业务实践。

    NebulaGraph
  • 美团DB数据同步到数据仓库的架构与实践

    本文主要从Binlog实时采集和离线处理Binlog还原业务数据两个方面,来介绍如何实现DB数据准确、高效地进入数仓。

    数据猿
  • 技术大牛都是怎么突破运维瓶颈、提升数据价值的?

    2019年度Gdevops全球敏捷运维峰会 经过潜心打磨,结合行业热点 将于5月10日以北京为起点强势启动 展开新一年精彩纷呈的技术巡演! 运维专场精华 以提...

    腾讯大讲堂
  • 美团 iOS 工程 zsource 命令背后的那些事儿

    今日头条丨一点资讯丨腾讯丨搜狐丨网易丨凤凰丨阿里UC大鱼丨新浪微博丨新浪看点丨百度百家丨博客中国丨趣头条丨腾讯云·云+社区

    数据猿
  • 我们为什么“暂时”干掉了线程池

      经历了考研“溺水”、亲人离别之后,闲鱼又恬不知耻地回到了原先的公司,重归队伍。此处感谢各位领导和老板,还有帅气的敏哥,以及团队的各位成员。   重回部门,看...

    闲宇非鱼
  • 美团即时物流的分布式系统架构设计

    本文根据美团资深技术专家宋斌在ArchSummit架构师峰会上的演讲整理而成,主要介绍在美团即时物流分布式系统架构逐层演变的进展中,遇到的技术障碍和挑战,还有我...

    美团技术团队
  • 【Spark】基于Spark的大型电商网站交互式行为分析系统项目实战

    (1)Spark在美团的实践 美团是数据驱动的互联网服务,用户每天在美团上的点击、浏览、下单支付行为都会产生海量的日志,这些日志数据将被汇总处理、分析、挖掘与...

    魏晓蕾
  • 美团技术十年:让我们感动的那些人那些事

    2010年3月4日美团网上线的时候,整个公司总共十来人,在一套三居室的民房里起步。其中技术团队只有5个人,现在有4位还在美团。

    石晓文
  • 美团外卖分布式系统架构设计

    美团外卖已经发展了五年,即时物流探索也经历了3年多的时间,业务从零孵化到初具规模,在整个过程中积累了一些分布式高并发系统的建设经验。最主要的收获包括两点:

    架构之家
  • 聊聊 page cache 与 Kafka 之间的事儿

    关于Kafka的一个灵魂拷问:它为什么这么快?或者说,为什么它能做到如此大的吞吐量和如此低的延迟?

    张乘辉
  • 实时数仓 | 你想要的数仓分层设计与技术选型

    数据仓库概念的提出都要追溯到上世纪了,我们认为在大数据元年之前的数仓可以称为传统数仓,而后随着海量数据不断增长,以及Hadoop生态不断发展,主要基于Hive/...

    大数据技术架构
  • 一文介绍kafka为什么这么快

    关于Kafka的一个灵魂拷问:它为什么这么快?或者说,为什么它能做到如此大的吞吐量和如此低的延迟?

    大数据老哥

扫码关注腾讯云开发者

领取腾讯云代金券