python 单变量线性回归

单变量线性回归(Linear Regression with One Variable)

In [54]:

#初始化工作
import random
import numpy as np
import matplotlib.pyplot as plt

# This is a bit of magic to make matplotlib figures appear inline in the notebook
# rather than in a new window.
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# Some more magic so that the notebook will reload external python modules;
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2

1、加载数据与可视化

In [55]:

print('Plotting Data ...')

def load_exdata(filename):
    data = []
    with open(filename, 'r') as f:
        for line in f.readlines(): 
            line = line.split(',')
            current = [float(item) for item in line]
            #5.5277,9.1302
            data.append(current)
    return data

data = load_exdata('ex1data1.txt');
data = np.array(data)
print(data.shape)

x = data[:, 0]; y = data[:,1]
m = data.shape[0] 
#number of training examples
plt.plot(x,y,'rx')
plt.ylabel('Profit in $10,000s');
plt.xlabel('Population of City in 10,000s');
plt.title("Training data")
Plotting Data ...
(97, 2)

Out[55]:

<matplotlib.text.Text at 0x2e663d888d0>

2、通过梯度下降求解theta

In [56]:

x = x.reshape(-1,1)
# 添加一列1
X = np.hstack([x,np.ones((x.shape[0], 1))])
theta = np.zeros((2, 1))
y = y.reshape(-1,1)

#计算损失
def computeCost(X, y, theta):
    m = y.shape[0]
    J = (np.sum((X.dot(theta) - y)**2)) / (2*m)  
    #X (m,2) theta (2,1) = m*1
    return J

#梯度下降
def gradientDescent(X, y, theta, alpha, num_iters):
    m = y.shape[0]
    # 存储历史误差
    J_history = np.zeros((num_iters, 1))
    
    for iter in range(num_iters):
        # 对J求导,得到 alpha/m * (WX - Y)*x(i),
        theta = theta - ( alpha/m) * X.T.dot(X.dot(theta) - y)
        J_history[iter] = computeCost(X, y, theta)
    return J_history,theta
    

iterations = 1500  #迭代次数
alpha = 0.01    #学习率
j = computeCost(X,y,theta)
J_history,theta = gradientDescent(X, y, theta, alpha, iterations)
print('Theta found by gradient descent: %f %f'%(theta[0][0],theta[1][0]))
plt.plot(J_history)
plt.ylabel('lost');
plt.xlabel('iter count')
Theta found by gradient descent: 1.166362 -3.630291

Out[56]:

<matplotlib.text.Text at 0x2e661194ac8>

3、训练结果可视化

In [57]:

#number of training examples
plt.plot(data[:,0],data[:,1],'rx')
plt.plot(X[:,0], X.dot(theta), '-')
plt.ylabel('Profit in $10,000s');
plt.xlabel('Population of City in 10,000s');
plt.title("Training data")

Out[57]:

<matplotlib.text.Text at 0x2e662155198>

4、可视化 J(theta_0, theta_1)

In [75]:

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter

theta0_vals = np.linspace(-10, 10, 100)
theta1_vals = np.linspace(-10, 10, 100)

J_vals = np.zeros((theta0_vals.shape[0], theta1_vals.shape[0]));


# 填充J_vals
for i in range(theta0_vals.shape[0]):
    for j in range(theta1_vals.shape[0]):
        t = [theta0_vals[i],theta1_vals[j]]
        J_vals[i,j] = computeCost(X, y, t)


fig = plt.figure()
ax = fig.gca(projection='3d')

theta0_vals, theta1_vals = np.meshgrid(theta0_vals, theta1_vals)
# Plot the surface.
surf = ax.plot_surface(theta0_vals, theta1_vals, J_vals, cmap=cm.coolwarm,
                       linewidth=0, antialiased=False)

# 定制Z轴.
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%d'))

# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)

plt.show()

In [ ]:

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

【Keras教程】用Encoder-Decoder模型自动撰写文本摘要

【导读】这篇博文介绍了如何在深度学习框架Keras上实现文本摘要问题,探讨了如何使用编码器-解码器递归神经网络体系结构来解决文本摘要问题,如何实现文本摘要问题的...

4545
来自专栏数据结构与算法

n皇后问题

1295 N皇后问题  时间限制: 2 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果 题目描述 Descripti...

2606
来自专栏marsggbo

什么是P问题、NP问题和NPC问题

    这或许是众多OIer最大的误区之一。     你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。你...

672
来自专栏机器之心

深度 | 你知道《圣经》中的主要角色有哪些吗?三种NLP工具将告诉你答案!

在思考数据科学的时候,我们常常想起数字的统计分析。但是,各种组织机构越来越频繁地生成大量可以被量化分析的非结构文本。一些例子如社交网络评论、产品评价、电子邮件以...

851
来自专栏拂晓风起

验证码去噪 分离背景 分离文字 最大类间方差

902
来自专栏大数据文摘

学界 | Ian Goodfellow推特小课堂又开课啦:数学求导的小技巧

1504
来自专栏机器之心

资源 | 从ReLU到Sinc,26种神经网络激活函数可视化

2709
来自专栏深度学习入门与实践

【深度学习系列】PaddlePaddle垃圾邮件处理实战(二)

  在上篇文章中我们讲了如何用支持向量机对垃圾邮件进行分类,auc为73.3%,本篇讲继续讲如何用PaddlePaddle实现邮件分类,将深度学习方法运用到文本...

480
来自专栏从流域到海域

《笨办法学Python》 第27课手记

《笨办法学Python》 第27课手记 本节课讲逻辑运算(即布尔运算),对于学过数字电路或者离散数学的人来说非常简单,甚至不需要去刻意记忆真值表。 逻辑运算只有...

17810
来自专栏大数据文摘

手把手:Python加密货币价格预测9步走,视频+代码

1475

扫描关注云+社区