Stanford机器学习笔记-9. 聚类(Clustering)

9. Clustering 

Content   9. Clustering     9.1 Supervised Learning and Unsupervised Learning     9.2 K-means algorithm     9.3 Optimization objective     9.4 Random Initialization     9.5 Choosing the Number of Clusters

9.1 Supervised Learning and Unsupervised Learning

我们已经学习了许多机器学习算法,包括线性回归,Logistic回归,神经网络以及支持向量机。这些算法都有一个共同点,即给出的训练样本自身带有标记。比如,使用线性回归预测房价时,我们所使用的每一个训练样本是一个或多个变量(如面积,楼层等)以及自身带有的标记即房价。而使用Logistic回归,神经网络和支持向量机处理分类问题时,也是利用训练样本自身带有标记即种类,例如进行垃圾邮件分类时是利用已有的垃圾邮件(标记为1)和非垃圾邮件(标记为0),进行数字识别时,变量是每个像素点的值,而标记是数字本身的值。我们把使用带有标记的训练样本进行学习的算法称为监督学习(Supervised Learning)。监督学习的训练样本可以统一成如下形式,其中x为变量,y为标记。

显然,现实生活中不是所有数据都带有标记(或者说标记是未知的)。所以我们需要对无标记的训练样本进行学习,来揭示数据的内在性质及规律。我们把这种学习称为无监督学习(Unsupervised Learning)。所以,无监督学习的训练样本如下形式,它仅包含特征量。

图9-1形象的表示了监督学习与无监督学习的区别。图(1)表示给带标记的样本进行分类,分界线两边为不同的类(一类为圈,另一类为叉);图(2)是基于变量x1和x2对无标记的样本(表面上看起来都是圈)进行聚类(Clustering)

图9-1 一个监督学习与无监督学习的区别实例

无监督学习也有很多应用,一个聚类的例子是:对于收集到的论文,根据每个论文的特征量如词频,句子长,页数等进行分组。聚类还有许多其它应用,如图9-2所示。一个非聚类的例子是鸡尾酒会算法,即从带有噪音的数据中找到有效数据(信息),例如在嘈杂的鸡尾酒会你仍然可以注意到有人叫你。所以鸡尾酒会算法可以用于语音识别(详见wikipedia)。

quora上有更多关于监督学习与无监督学习之间的区别的讨论

图9-2 一些聚类的应用

9.2 K-means algorithm

聚类的基本思想是将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个""(cluster)。划分后,每个簇可能有对应的概念(性质),比如根据页数,句长等特征量给论文做簇数为2的聚类,可能得到一个大部分是包含硕士毕业论文的簇,另一个大部分是包含学士毕业论文的簇。

K均值(K-means)算法是一个广泛使用的用于簇划分的算法。下面说明K均值算法的步骤:

  1. 随机初始化K个样本(点),称之为簇中心(cluster centroids)
  2. 簇分配: 对于所有的样本,将其分配给离它最近的簇中心;
  3. 移动簇中心:对于每一个簇,计算属于该簇的所有样本的平均值,移动簇中心到平均值处;
  4. 重复步骤2和3,直到找到我们想要的簇(即优化目标,详解下节9.3)

图9-3演示了以特征量个数和簇数K均为2的情况。

上述算法中,第一个循环对应了簇分配的步骤:我们构造向量c,使得c(i)的值等于x(i)所属簇的索引,即离x(i)最近簇中心的索引。用数学的方式表示如下:

第二个循环对应移动簇中心的步骤,即移动簇中心到该簇的平均值处。更数学的方式表示如下:

其中

都是被分配给簇

的样本。

如果有一个簇中心没有分配到一个样本,我们既可以重新初始化这个簇中心,也可以直接将其去除。

经过若干次迭代后,该算法将会收敛,也就是继续迭代不会再影响簇的情况。

在某些应用中,样本可能比较连续,看起来没有明显的簇划分,但是我们还是可以用K均值算法将样本分为K个子集供参考。例如根据人的身高和体重划分T恤的大小码,如图9-4所示。

图9-4 K-means for non-separated clusters

9.3 Optimization objective

9.4 Random Initialization

9.5 Choosing the Number of Clusters

选择K的取值通常是主观的,不明确的。也就是没有一种方式确保K的某个取值一定优于其他取值。但是,有一些方法可供参考。

The elbow method : 画出代价J关于簇数K的函数图,J值应该随着K的增加而减小,然后趋于平缓,选择当J开始趋于平衡时的K的取值。如图9-5的(1)所示。

但是,通常这条曲线是渐变的,没有很显然的"肘部"。如图9-5的(2)所示。

图9-5 代价J关于簇数K的曲线图

注意:随着K的增加J应该总是减少的,否则,一种出错情况可能是K均值陷入了一个糟糕的局部最优。

一些其他的方法参见wikipedia

当然,我们有时应该根据后续目的( later/downstream purpose )来确定K的取值。还是以根据人的身高和体重划分T恤的大小码为例,若我们想将T恤大小划分为S/M/L这3种类型,那么K的取值应为3;若想要划分为XS/S/M/L/XL这5种类型,那么K的取值应为5。如图9-6所示。

图9-6 划分T恤size的两种不同情况

【推荐阅读】讨论K均值算法的缺点

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏目标检测和深度学习

卷积神经网络工作原理直观的解释

792
来自专栏人工智能头条

从CNN视角看在自然语言处理上的应用

2003
来自专栏红色石头的机器学习之路

台湾大学林轩田机器学习技法课程学习笔记12 -- Neural Network

上节课我们主要介绍了Gradient Boosted Decision Tree。GBDT通过使用functional gradient的方法得到一棵一棵不同的...

2270
来自专栏李智的专栏

斯坦福CS231n - CNN for Visual Recognition(2)-lecture3(上)线性分类器、损失函数

  由于之前KNN分类器的缺点,让我们很自然地去寻找有更加强大地方法去完成图像分类任务,这种方法主要有两部分组成: 评分函数(score function)...

821
来自专栏深度学习自然语言处理

白话word2vec

word2vec 是2012年被被Google提出来的将文本生成词向量模型,其中包括了两个模型,continous bag of words(CBOW)和Ski...

992
来自专栏专知

人人都能读懂卷积神经网络:Convolutional Networks for everyone

【导读】近日,Rohan Thomas发布一篇博文,通俗地讲解了卷积神经网络的结构、原理等各种知识。首先介绍了卷积神经网络(CNN)和人工神经网络(ANN)的不...

3579
来自专栏杨熹的专栏

按时间轴简述九大卷积神经网络

timeline ---- 1998, Yann LeCun 的 LeNet5 图像特征分布在整个图像上 在具有很少参数的多个位置上提取类似特征时,具有可学习...

61810
来自专栏决胜机器学习

神经网络和深度学习(五) ——深层神经网络基础

神经网络和深度学习(五)——深层神经网络基础 (原创内容,转载请注明来源,谢谢) 一、概述 本文是对深层神经网络的基础,主要讨论深层神经网络的算法、公式推导以...

3797
来自专栏PPV课数据科学社区

干货:Excel图解卷积神经网络结构

先坦白地说,有一段时间我无法真正理解深度学习。我查看相关研究论文和文章,感觉深度学习异常复杂。我尝试去理解神经网络及其变体,但依然感到困难。

1122
来自专栏AI研习社

视频 | 手把手教你构建图片分类器,备战 kaggle 大赛!

AI 研习社按:今天为大家带来硅谷深度学习网红 Siraj 的一则教学视频:如何从零开始构建一个图像分类器来对猫和狗进行分类。(内心OS:终于要开始图像部分了!...

3344

扫码关注云+社区