开发 | One-Page AlphaGo——十分钟看懂 AlphaGo 的核心算法!

AI科技评论按:本文作者夏飞,清华大学与卡内基梅隆大学毕业,现于谷歌从事技术研发工作。本文是对《自然》上发表的知名论文“Mastering the game of Go with deep neural networks and tree search”进行的总结,对 AlphaGo 的算法结构进行了概括。原总结文用英语写就,经AI科技评论编译。

下文概括了围棋借助人工智能在 2016 年实现的突破。

围棋是一个完全信息博弈问题。而完全信息博弈,通常能被简化为寻找最优值的树搜索问题。它含有 b 的 d 次方个可能分支,在国际象棋中 b≈35,d≈80;而在围棋中 b≈250,d≈150。很显然,对于围棋,用穷举法或简单的寻路算法(heuristics)是行不通的。但有效的方法是存在的:

  • 从策略(policy) P(a|s) 中取样 action,降低搜索广度
  • 通过位置评估降低搜索深度
  • 把策略和值用蒙特卡洛树搜索(MCTS)结合起来。

通常的步骤是:

  • 用一个 13 层的 CNN,直接从人类棋步中训练一个监督学习策略网络 Pσ。输入为 48 x 19 x 19 的图像(比方说,它的组成棋子颜色 是 3 x 19 x 19),输出是使用 softmax 层预测的全部落子的概率。精确度是 55.7%。
  • 训练一个能在运行时快速取样 action 的快速策略 Pπ。这会用一个基于小型模式特征的线性 softmax。精确度是 24.2%,但它计算一次落子只用 2 微秒,而不像 Pσ 需要 3 毫秒。
  • 训练一个增强学习策略网络 Pρ ,通过优化博弈结果来进一步提升监督策略网络。这把策略网络向赢棋优化,而不是优化预测精确度。本质上,Pρ 与 Pσ 的结构是一样的。它们的权重使用相同值 ρ=σ 初始化。对弈的两个选手,是当前策略网络 Pρ 和随机(防止过拟合)选择的此前的策略网络迭代。
  • 训练一个价值网络(value network)Vθ,来预测强化学习策略网络自己和自己下棋的赢家。该网络的架构和策略网络类似,但多出一个特征平面(当前玩家的颜色),并且输出变成了单一预测(回归,均方差损失)。根据完整棋局来预测对弈结果,很容易导致过拟合。这是由于连续落子位置之间高度相关,只有一子之差。因此,这里使用了强化学习策略网络自己与自己对弈新生成的数据。该数据从包含 3000 万个不同位置的独立棋局中抽取。
  • 把策略网络、价值网络、快速策略和蒙特卡洛树搜索结合起来。一个标准的蒙特卡洛树搜索过程包含四步:选择、扩展、评估、备份。为了让大家更容易理解,我们只粗略讲了讲它如何在模拟中选择状态的部分(如对数学感兴趣,请到原始论文中找公式)。

状态分数=价值网络输出+快速运行(fast rollout)的策略结果+监督学习策略网络输出

高状态得分(或者说落子)会被选择。价值网络输出和快速运行策略结果是评估函数,在叶子节点进行评估(注意,为了评估快速运行,需要一直到最后一步)。监督学习策略网络输出是一个当前阶段的 action 概率,充作选取分数的奖励分。该分数会随访问次数而退化,以鼓励探索。注意强化学习策略网络只被用于辅助,来生成价值网络,并没有直接在蒙特卡洛树搜索中使用。

到这就结束了,以上就是战胜了人类的 AlphaGo 算法!

“12小时零基础入门深度学习”,欢迎来玩!

“AlphaGo的划时代意义在于它不仅仅缩短了机器与人的智能距离,还将颠覆人与人智商差异的感知 。” 这是在去年AlphaGo战胜李世石后, 有业内人士如是说。

The rich get richer,门外汉也想窥探人工智能背后的神秘。AI慕课学院自上线以来推出了不少人工智能专业课程,有不少像小编这样的AI小白空有一腔热情却只能望而却步。现在,雷锋网携手AI慕课学院推出《12小时零基础入门深度学习》(线下周末班,仅50个名额),邀请了IOT农业机械和MLAQI预测算法项目的深度学习工程师Chris、“深度学习”和“无人驾驶”领域有丰富教学经验的Max博士、曾参与某大型算法金融项目研发的深度学习工程师杨杰等中外讲师,12小时现场授课,采用“探索+实践”的硅谷教学模式,用最流行的深度学习技能 CNN、RNN、VGG16、ResNet、InceptionCNN等动手操作9大项目,fastai中文社区最活跃的四位贡献者为你打开深度学习入门的那扇门,快速构建你的深度学习应用。目前课程回馈价599元,史上最低,欢迎来玩。

讲真,小编在一个月前知道“AI慕课学院” 在密谋这个课程福利的时候就已经悄悄预约了,名额有限,快来面基呀。

详情请点击“阅读原文”查看,或直接访问http://www.mooc.ai/course/92

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-05-23

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CreateAMind

技术架构分析:攻克Dota2的OpenAI-Five

1271
来自专栏ivan空间

一种基于小数据量做分析判断的方法

在进行业务开发时,可能经常需要根据累计的样本数据,进行判断;并根据判断的结果进行相关的处理。

1105
来自专栏机器之心

超越蒙特卡洛树搜索:北大提出深度交替网络和长期评估围棋模型

选自arXiv 机器之心编译 参与:李泽南、吴攀 在五月底与柯洁等人的系列对局之后,人工智能围棋大师 AlphaGo 已经功成名就,金盆洗手了,参阅《现场报道 ...

2785
来自专栏量子位

如何给非专业人士讲解什么是深度学习?

本文转载自王咏刚微信:半轻人,点击左下角阅读原文,可直达原文链接。 去年开始,工作中需要做许多有关 AI 科普的事情。很长时间里一直在想,该如何给一个没有 CS...

3378
来自专栏企鹅号快讯

AI技术词条 强化学习

关注AI君,领略人工智能之美 ? 强化学习 Reinforcement Learning 前言 各位读者,新年好! 欢迎阅读《AI技术词条》系列文章,这一系列文...

1968
来自专栏AI科技评论

UC Berkeley 讲座教授王强:Deep Learning 及 AlphaGo Zero(下)

AI 科技评论按:北京时间10月19日凌晨,DeepMind在Nature上发布论文《Mastering the game of Go without huma...

3375
来自专栏AI研习社

话题 | 如何看待索尼公司提出一种新的大规模分布式训练方法,在224秒内成功训练 ImageNet?

@ 依耶塔•朱丽 提问:如何看待索尼公司提出一种新的大规模分布式训练方法,在224秒内成功训练 ImageNet?

952
来自专栏PPV课数据科学社区

如何给非专业人士讲解什么是深度学习?

去年开始,工作中需要做许多有关 AI 科普的事情。很长时间里一直在想,该如何给一个没有 CS 背景的人讲解什么是深度学习,以便让一个非技术的投资人、企业管理者、...

3326
来自专栏个人分享

机会的度量:概率和分布

  如果一个不出现,则另一个肯定出现的两个事件成为互补事件(complementary events,或者互余事件或对立事件).按照集合的记号,如果一个事件记为...

874
来自专栏AI科技评论

问答 | 如何看待索尼公司提出一种新的大规模分布式训练方法,在224秒内成功训练 ImageNet?

社长为你推荐来自 AI 研习社问答社区的精华问答。如有你也有问题,欢迎进社区提问。

1085

扫码关注云+社区