快速理解bootstrap、bagging、boosting

Bootstraping: 名字来自成语“pull up by your own bootstraps”,意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法。其核心思想和基本步骤如下:   (1) 采用重抽样技术从原始样本中抽取一定数量(自己给定)的样本,此过程允许重复抽样。   (2) 根据抽出的样本计算给定的统计量T。   (3) 重复上述N次(一般大于1000),得到N个统计量T。   (4) 计算上述N个统计量T的样本方差,得到统计量的方差。   应该说Bootstrap是现代统计学较为流行的一种统计方法,在小样本时效果很好。通过方差的估计可以构造置信区间等,其运用范围得到进一步延伸。

Jackknife: 和上面要介绍的Bootstrap功能类似,只是有一点细节不一样,即每次从样本中抽样时候只是去除几个样本(而不是抽样),就像小刀一样割去一部分。

bagging:bootstrap aggregating的缩写。让该学习算法训练多轮,每轮的训练集由从初始的训练集中随机取出的n个训练样本组成,某个初始训练样本在某轮训练集中可以出现多次或根本不出现,训练之后可得到一个预测函数序列h_1,⋯ ⋯h_n ,最终的预测函数H对分类问题采用投票方式,对回归问题采用简单平均方法对新示例进行判别。[训练R个分类器f_i,分类器之间其他相同就是参数不同。其中f_i是通过从训练集合中(N篇文档)随机取(取后放回)N次文档构成的训练集合训练得到的。对于新文档d,用这R个分类器去分类,得到的最多的那个类别作为d的最终类别。

boosting: 其中主要的是AdaBoost(Adaptive Boosting)。初始化时对每一个训练例赋相等的权重1/n,然后用该学算法对训练集训练t轮,每次训练后,对训练失败的训练例赋以较大的权重,也就是让学习算法在后续的学习中集中对比较难的训练例进行学习,从而得到一个预测函数序列h_1,⋯, h_m , 其中h_i也有一定的权重,预测效果好的预测函数权重较大,反之较小。最终的预测函数H对分类问题采用有权重的投票方式,对回归问题采用加权平均的方法对新示例进行判别。(类似Bagging方法,但是训练是串行进行的,第k个分类器训练时关注对前k-1分类器中错分的文档,即不是随机取,而是加大取这些文档的概率。) Bagging与Boosting的区别:

二者的主要区别是取样方式不同。Bagging采用均匀取样,而Boosting根据错误率来取样,因此Boosting的分类精度要优于Bagging。

Bagging的训练集的选择是随机的,各轮训练集之间相互独立,而Boostlng的各轮训练集的选择与前面各轮的学习结果有关;Bagging的各个预测函数没有权重,而Boosting是有权重的;Bagging的各个预测函数可以并行生成,而Boosting的各个预测函数只能顺序生成。对于象神经网络这样极为耗时的学习方法。Bagging可通过并行训练节省大量时间开销。 bagging和boosting都可以有效地提高分类的准确性。在大多数数据集中,boosting的准确性比bagging高。在有些数据集中,boosting会引起退化— Overfit。 Boosting思想的一种改进型AdaBoost方法在邮件过滤、文本分类方面都有很好的性能。、

gradient boosting(又叫Mart, Treenet):Boosting是一种思想,Gradient Boosting是一种实现Boosting的方法,它主要的思想是,每一次建立模型是在之前建立模型损失函数的梯度下降方向。损失函数(loss function)描述的是模型的不靠谱程度,损失函数越大,则说明模型越容易出错。如果我们的模型能够让损失函数持续的下降,则说明我们的模型在不停的改进,而最好的方式就是让损失函数在其梯度(Gradient)的方向上下降。

Rand forest: 随机森林,顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为那一类。 在建立每一棵决策树的过程中,有两点需要注意 – 采样与完全分裂。首先是两个随机采样的过程,random forest对输入的数据要进行行、列的采样。

对于行采样,采用有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。假设输入样本为N个,那么采样的样本也为N个。这样使得在训练的时候,每一棵树的输入样本都不是全部的样本,使得相对不容易出现over-fitting。然后进行列采样,从M个feature中,选择m个(m << M)。之后就是对采样之后的数据使用完全分裂的方式建立出决策树,这样决策树的某一个叶子节点要么是无法继续分裂的,要么里面的所有样本的都是指向的同一个分类。一般很多的决策树算法都一个重要的步骤 – 剪枝,但是这里不这样干,由于之前的两个随机采样的过程保证了随机性,所以就算不剪枝,也不会出现over-fitting。按这种算法得到的随机森林中的每一棵都是很弱的,但是大家组合起来就很厉害了。 可以这样比喻随机森林算法:每一棵决策树就是一个精通于某一个窄领域的专家(因为我们从M个feature中选择m让每一棵决策树进行学习),这样在随机森林中就有了很多个精通不同领域的专家,对一个新的问题(新的输入数据),可以用不同的角度去看待它,最终由各个专家,投票得到结果。

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2015-10-21

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

数据挖掘算法-Matlab实现:Logistic 回归

什么叫做回归呢?举个例子,我们现在有一些数据点,然后我们打算用一条直线来对这些点进行拟合(该曲线称为最佳拟合曲线),这个拟合过程就被称为回归。 利用Logis...

2786
来自专栏Echo is learning

Gradient Descent

1263
来自专栏小石不识月

机器学习中分类与回归的差异

在分类(Classification)问题与回归(Regression)问题之间,有着一个重要的区别。

1849
来自专栏jeremy的技术点滴

机器学习课程_笔记03

27614
来自专栏深度学习之tensorflow实战篇

随机森林基本原理

基础内容: 这里只是准备简单谈谈基础的内容,主要参考一下别人的文章,对于随机森林与GBDT,有两个地方比较重要,首先是information gain,其次是决...

3299
来自专栏https://www.cnblogs.com/L

【机器学习】--Adaboost从初始到应用

AdaBoost算法和GBDT(Gradient Boost Decision Tree,梯度提升决策树)算法是基于Boosting思想的机器学习算法。在Boo...

462
来自专栏深度学习思考者

机器学习中常见问题_几种梯度下降法

一、梯度下降法   在机器学习算法中,对于很多监督学习模型,需要对原始的模型构建损失函数,接下来便是通过优化算法对损失函数进行优化,以便寻找到最优的参数。在求解...

2228
来自专栏老秦求学

K近邻算法小结

什么是K近邻? K近邻一种非参数学习的算法,可以用在分类问题上,也可以用在回归问题上。 什么是非参数学习? 一般而言,机器学习算法都有相应的参数要学习,比如线...

33012
来自专栏技术小站

吴恩达深度学习笔记 2.6~2.9 logistic中的梯度下降

之前我们已经了解了Coss Function的定义,它是一个convex,所以我们能找到它的全局最优解,我们可以先可以先随便选取一组w,b,求得刚开始J(w,b...

592
来自专栏机器学习算法与Python学习

机器学习(23)之GBDT详解

关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 前言 在(机器学习(20)之Adab...

3257

扫描关注云+社区