【编程指导】如何系统、科学地自学编程知识?

对于什么样的学习才算得上“系统”几乎是一个哈姆雷特式的问题——人们很难在这一问题上达成一致。

因此抛出答案几乎只是在引发更多的争议。所以在讨论这个问题的时候,我必须承认下述描述只是我自己的一点小小的体会,只希望能对你有所帮助,这些看法并不“权威”,也不完全“正确”。

一般来说对于计算机科学的学生来说,下述课程是非常关键的:

提醒:学习时注意把握合理的深度,不可太浮于表面,也不可太过拘泥于部分细节,对于初学着重掌握基础内容,能在概念上建立一个合理的认识就可以。真正的学习是在后面的职业生涯中完成的。

一、基础篇(理论与硬件)

这一部分关注的是计算机的基本理论与基本实现。包括硬件结构理论,以及软件与硬件的交互。以理论开篇,在机器语言部分深入,最终在操作系统部分达到高潮。

1、计算机实现计算的原理。这包括门电路是如何实现计算的,时序电路是如何实现存储的,冯诺依曼体系结构是如何将二者结合实现了真正的现实世界的计算机的,以及它是如何反映图灵机这一理论计算模型的。其间会学习布尔逻辑。

2、如何控制计算机硬件。这部分使用的“工具”就是机器语言和汇编语言。我们需要理解机器语言的本质,以及它如何以“汇编语言”这种更容易理解的形式为程序员提供了控制硬件设备的机会。这部分可以学习到很多非常低级但是本质的内容。

3、操作系统是如何工作的。如果你理解了上一部分的计算机硬件相关的问题,那么理解操作系统的工作原理将不会那么困难。另外你将明白操作系统作为硬件和上层软件的中间层次,是如何大大简化了人们对硬件的操作过程的。

二、进阶篇(软件系统)

1、编程语言。这包括结构化编程语言以及面向对象编程语言。因为有很多选择,其实以一门语言开始即可,如果你在前面正确的理解了硬件与机器语言,那么C语言入门真是太简单了,如果你运气不好,觉得C很困难,那么即使是从Python、Javascript开始学习也没问题。重点在于理解编程中和语法相关的基本概念,并了解一些简单的算法知识。

2、数据结构与算法。说白了就是如何合理的组织数据,通过其结构特点来简化编程或者提高计算的效率。这里的内容是模式化的,所有人都需要学习无序结构、有序线性结构、树结构、图结构等。另外,排序算法、查找算法必须学好,特别是算法策略如递推、递归、蛮力(穷举)、分治、动态规划等也必须有所实践和了解。切记不必深陷其中,这里是个大坑,你不可能真的“精通”他们。

3、编程语言是如何实现的。这里主要涉及编译原理。当你站在高级编程语言实现者的角度再来认识编程语言本身的时候,许多问题豁然开朗。这会深刻的改变你的编程观。可惜的是即使是很好的学生在这里也会遇到很大的阻力。真正的问题不是这方面理论性有多强,而是教材都很烂——包括国外教材(什么龙书虎书鲸书都根本不是为初学者准备的),而且语焉不详。这导致大部分人都感觉莫名其妙高深莫测。如果你不是有志攀登软件设计的最高峰,可以绕行。否则从表达式运算解析开始,逐步引入变量,类型,控制结构,函数,再到对象,一步步构建出解析器,然后结合前面学习的硬件接口知识,将其转换为低级表示,最后你会发现没有那么可怕。

三、基础领域篇(必备领域知识)

1、互联网络是如何构成的。这部分包括网络的基本知识,主机间通信的原理,转发设备的实现,以及互联网络的构成。这是网络编程所需的基础知识。除了理解低级协议,也要花一些时间了解应用层的协议,特别是 SMTP、POP3、FTP、HTTP 等,重点是了解他们的基本原理,而不是每个细节。因为每个协议都有自己的标准,光 HTTP 协议就够你研究 6 个月以上了。这里注重的是原理。

2、如何管理大量的数据并在其上建立信息系统。数据库是一个很好的例子。包括数据库系统的基本理论,实现原理,以及设计原则。同样,这里不是真的在教你如何构建一个数据库系统,而是在学习他的核心原则,重点是学会如何合理的设计表结构,以及实现效率良好的SQL查询语句。

四、扩展领域篇(特定领域知识)

1、基于特定平台的软件开发。如何在Windows平台、Linux平台、Mac OS平台或者手机、平板、电视机、微波炉上完成开发?这需要学习特定的软件平台提供了哪些编程接口,如何编译并部署,如何调试和测试等知识。这部分就是软件工程师职业生涯中最耗费时间的部分。

2、有效的软件研发是如何实现的。这包括软件结构的设计知识,软件实施流程的管理知识,以及一些细微而繁杂的内容。人们通常用软件工程一词来概括。但事实上软件工程站的角度要更高一些,这里只是涵盖软件工程的一小部分。

五、科技领域篇(研究性知识)

如果你对人工智能、科学计算、图像处理感兴趣,这里还有大片的区域等待你探索。

事实上,上面的描述有些吓人。每一个领域都够耗尽去很长的时间。不过好消息是大部分知识都只要求在理论上理解。真正的耗费时间的部分还是在与编程、编程、编程。不是每个人都会用到数据库系统,也不是每个人都需要懂得汇编语言。但是这些背景知识会对你有帮助。让你不再害怕,对自己更有自信。

如果你希望自己成为一个很棒的开发人员,那么上述知识都是必须的。但是却依然远远不够。

学无止境,计算机科学尤其如此。

我说的实在太多了。思考和打字差不多耗费了我一个小时。我不太确定这些对你是否有帮助。我希望有,至少有那么一些。但我有点害怕,似乎我的描述不是在帮助你克服困难,而是制造了更多看似难以逾越的高山。

但我想说:走入编程,然后走出编程。编程是为解决问题服务的,我们应当多思考想要解决的问题是什么。这会在我们迷茫的编程生涯中起到指南针的作用。它会告诉我们需要学习什么,然后由我们自己来回答如何学习。

我的一位朋友是做生物科技的,他需要在海量的DNA序列里快速的进行基因片段的比较。为了完成这一任务,他学习了 Python,并着重学习了数据结构和算法相关的内容。虽然最后他写出来的程序外表看起来很简单,但是却速度飞快,为他的事业贡献了无形的资产。

这就是他的起点。但是他并不满足。他继续学习如何增强程序的稳定性,如何编写更好的界面等等。现在他的软件真的非常棒,一些关键的效率相关部分已经替换为C++实现,界面也做得很专业。

天啊,真的无法相信,这就是一位生物领域的研究人员自己亲力亲为的成果。即使是用苛刻的眼光来看,现在他的软件也相当不错。

我举这个例子,想说明的核心在于,知识的学习,要想高效,一个广为大众所接受的观点就是应当围绕一定的具体的目标来进行。如果我们知道我们想要解决的问题是什么,那么我们进一步确定要学习哪些编程知识就会比较容易。相反,为了学而学,泛泛而看,效果通常都是很差的。只能给你留下一些大致的印象,而无法成为你真正的可用的知识。

文章来自知乎(作者:林建入)

原文发布于微信公众号 - 程序员互动联盟(coder_online)

原文发表时间:2015-06-01

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据科学与人工智能

【数据分析】三大关键步骤:人人都是分析师

当你遇上难题的时候,你试过一声“天知道”然后就草率决定吗?保守估计一般人平均每天要做上百个决定,这些决定小到早餐要吃什么,大到要不要跳槽,都需要我们动动脑筋。有...

2076
来自专栏AI科技评论

FPGA 性能出众,那么它能取代CPU和GPU吗?

GAIR 今年夏天,雷锋网将在深圳举办一场盛况空前的“全球人工智能与机器人创新大会”(简称GAIR)。大会现场,雷锋网将发布“人工智能&机器人Top25创新企...

3036
来自专栏Keegan小钢

003 | 从学会到精通的方法论

如果你按照我上一篇文章所展示的学习方法去学习一门新技能的话,不管是区块链,还是一门新编程语言,一周时间足以让你上手。我学习区块链从不会到学会就是用了一个星期左右...

733
来自专栏Bug生活2048

新一代唱作人,微软小冰居然发布新歌了

这是昨晚才看到的新闻,看完之后马上到网易云上听了小冰的大作,歌曲还是挺有意思的。之前一直有关注微软小冰,以前的它可能还是刚出生的婴儿,而如今,它也在渐渐的成长。

694
来自专栏鸿的学习笔记

2018的第一份书单

1.《fluent python》(中文版:《流畅的python》) 这本书来源于某个公众号的推荐(忘了是哪个了),在读这本书之前,已经阅读了市面上很多pyth...

441
来自专栏PPV课数据科学社区

R语言知识体系概览

1. R的知识体系结构 R语言是一门统计语言,主要用于数学建模、统计计算、数据处理、可视化 等几个方向,R语言天生就不同于其他的编程语言。R语言封装了各种基础学...

3357
来自专栏数据科学与人工智能

【Python环境】《Python数据科学入门》试译 第一章 简介

“数据!数据!数据!”他焦急地高叫着,“(如果没有数据),巧妇难为无米之炊啊!” --Arthur Conan Doyle 数据力量 我们正生活在一个被数据淹...

1926
来自专栏企鹅号快讯

薪资20K+案例分析之五:数据结构设计

这是一套薪资在20K+的面试题,下面以连载的形式开始对该试题进行分析,希望通过该案例的学习,能够让软件开发人员了解到软件开发的工程管理方法和系统分析方法。 ? ...

2105
来自专栏镁客网

编程自动化,未来机器人将超越人类?

1123
来自专栏大数据文摘

裂变时间!催化介质!4D打印未来将改变商业生态

952

扫描关注云+社区