【R语言】用gbm包来提升决策树能力

中国有句老话:三个臭皮匠,顶个诸葛亮。这个说法至少在变形金刚中得到了体现,没有组合之前的大力神只是五个可以被柱子哥随手秒掉工地苦力。但组合之后却是威力大增。在机器学习领域也是如此,一堆能力一般的“弱学习器”也能组合成一个“强学习器”。前篇文章提到的随机森林就是一种组合学习的方法,本文要说的是另一类组合金刚: 提升方法(Boosting) 。提升方法是一大类集成分类学习的统称。它用不同的权重将基学习器进行线性组合,使表现优秀的学习器得到重用。在 R语言中gbm包 就是用来实现一般提升方法的扩展包。根据基学习器、损失函数和优化方法的不同,提升方法也有各种不同的形式。 自适应提升方法AdaBoost 它是一种传统而重要的Boost算法,在学习时为每一个样本赋上一个权重,初始时各样本权重一样。在每一步训练后,增加错误学习样本的权重,这使得某些样本的重要性凸显出来,在进行了N次迭代后,将会得到N个简单的学习器。最后将它们组合起来得到一个最终的模型。 梯度提升方法Gradient Boosting 梯度提升算法初看起来不是很好理解,但我们和线性回归加以类比就容易了。回忆一下线性回归是希望找到一组参数使得残差最小化。如果只用一次项来解释二次曲线一定会有大量残差留下来,此时就可以用二次项来继续解释残差,所以可在模型中加入这个二次项。 同样的,梯度提升是先根据初始模型计算伪残差,之后建立一个基学习器来解释伪残差,该基学习器是在梯度方向上减少残差。再将基学习器乘上权重系数(学习速率)和原来的模型进行线性组合形成新的模型。这样反复迭代就可以找到一个使损失函数的期望达到最小的模型。在训练基学习器时可以使用再抽样方法,此时就称之为 随机梯度提升算法stochastic gradient boosting 。 在gbm包中,采用的是决策树作为基学习器,重要的参数设置如下:

  • 损失函数的形式(distribution)
  • 迭代次数(n.trees)
  • 学习速率(shrinkage)
  • 再抽样比率(bag.fraction)
  • 决策树的深度(interaction.depth)

损失函数的形式容易设定,分类问题一般选择bernoulli分布,而回归问题可以选择gaussian分布。学习速率方面,我们都知道步子迈得太大容易扯着,所以学习速率是越小越好,但是步子太小的话,步数就得增加,也就是训练的迭代次数需要加大才能使模型达到最优,这样训练所需时间和计算资源也相应加大了。gbm作者的经验法则是设置shrinkage参数在0.01-0.001之间,而n.trees参数在3000-10000之间。 下面我们用mlbench包中的数据集来看一下gbm包的使用。其中响应变量为diabetes,即病人的糖尿病诊断是阳性还是阴性。

# 加载包和数据library(gbm)data(PimaIndiansDiabetes2,package='mlbench')# 将响应变量转为0-1格式data <- PimaIndiansDiabetes2data$diabetes <- as.numeric(data$diabetes)data <- transform(data,diabetes=diabetes-1)# 使用gbm函数建模model <- gbm(diabetes~.,data=data,shrinkage=0.01,
             distribution='bernoulli',cv.folds=5,
             n.trees=3000,verbose=F)# 用交叉检验确定最佳迭代次数best.iter <- gbm.perf(model,method='cv')
# 观察各解释变量的重要程度summary(model,best.iter)
# 变量的边际效应plot.gbm(model,1,best.iter)
# 用caret包观察预测精度library(caret)data <- PimaIndiansDiabetes2fitControl <- trainControl(method = "cv", number = 5,returnResamp = "all")model2 <- train(diabetes~., data=data,method='gbm',distribution='bernoulli',trControl = fitControl,verbose=F,tuneGrid = data.frame(.n.trees=best.iter,.shrinkage=0.01,.interaction.depth=1))
model2

Accuracy Kappa Accuracy SD Kappa SD 0.78 0.504 0.0357 0.0702 观察到gbm迭代到800次左右最优,得到的预测正确率为0.78,这个比随机森林的正确率还要略高一些。提升算法继承了单一决策树的优点,例如:能处理缺失数据,对于噪声数据不敏感,但又摒弃了它的缺点,使之能拟合复杂的非线性关系,精确度大为提高。通过控制迭代次数能控制过度拟合,计算速度快。但由于它是顺序计算的,所以不好进行分布式计算。

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2016-01-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

如何解读决策树和随机森林的内部工作机制?

选自 Pivotal 机器之心编译 参与:Panda 随机森林在过去几年里得到了蓬勃的发展。它是一种非线性的基于树的模型,往往可以得到准确的结果。但是,随机森林...

27410
来自专栏AI科技评论

学界 | 腾讯AI Lab解读多篇ACL 2018入选长文

本文转载自腾讯 AI Lab,微信号 tencent_ailab。本文将详解 2018 年 NLP 领域顶级学术会议 ACL 上,腾讯AI Lab入选 5 篇文...

1062
来自专栏崔庆才的专栏

NanoNets:数据有限如何应用深度学习?

1334
来自专栏机器之心

学界 | LeCun提出错误编码网络,可在不确定环境中执行时间预测

3299
来自专栏企鹅号快讯

从Q学习到DDPG,一文简述多种强化学习算法

选自towardsdatascience 作者:Steeve Huang 机器之心编译 参与:Edison Ke、路雪 本文简要介绍了强化学习及其重要概念和术语...

2607
来自专栏人工智能

神经网络

如今,科学家正在努力探索人脑的奥秘,他们试图通过模仿人脑,来找到大数据的解决方案。

83711
来自专栏CreateAMind

大话逻辑回归

本文目的是以大白话的方式介绍逻辑回归。我们先简要以公式的方式回顾什么是逻辑回归,如何训练。然后,我们用大白话的方式重新解释一次逻辑回归。最后,我们介绍逻辑回归和...

591
来自专栏SIGAI学习与实践平台

FlowNet到FlowNet2.0:基于卷积神经网络的光流预测算法

光流预测一直都是计算机视觉中的经典问题,同时又是解决很多其他问题的基础而备受关注,例如,运动估计、运动分割和行为识别。随着深度神经网络技术在计算机视觉领域中引发...

1175
来自专栏IT派

从香农熵到手推KL散度:一文带你纵览机器学习中的信息论

IT派 - {技术青年圈} 持续关注互联网、大数据、人工智能领域 信息论是应用数学的一个分支,主要研究的是对一个信号包含信息的多少进行量化。它最初被发明是用来...

3448
来自专栏AI科技大本营的专栏

笔记 | 吴恩达Coursera Deep Learning学习笔记

向AI转型的程序员都关注了这个号☝☝☝ ? 作者:Lisa Song 微软总部云智能高级数据科学家,现居西雅图。具有多年机器学习和深度学习的应用经验,熟悉各种业...

38015

扫码关注云+社区