开发 | 星际争霸2人工智能研究环境 SC2LE 初体验

1 前言

昨天,也就是2017年8月10号,DeepMind联合暴雪发布了星际争霸2人工智能研究环境SC2LE,从而使人工智能的研究进入到一个全新的阶段。这次,研究人工智能的小伙伴们可以边玩游戏边做研究了?。

为了让更多的朋友了解SC2LE研究环境,我们在第一时间对其进行安装测试,并对DeepMind发布的pysc2代码进行分析,初步了解基于pysc2的RL开发方法。下面我们将一一进行介绍。

2 测试使用设备

  • Macbook Pro 13inch (MacOS Sierra)
  • Alienware 13inch (Ubuntu 14.04)

3 安装方法

3.1 Mac环境下的安装

(1)安装pysc2

如果权限不够,就加上sudo:

程序会自动安装各种依赖:

Installing collected packages: google-apputils, pygame, future, pysc2
Successfully installed future-0.16.0 google-apputils-0.4.2 pygame-1.9.3 pysc2-1.0

(2)然后在国服下载mac版的星际争霸客户端:https://www.battlenet.com.cn/account/download/ ,mac版的,然后安装,30个G,3.16.1版本。

(3)下载完毕可以运行游戏就OK

(4)下载Map Packs,mini-game和replay:Blizzard/s2client-proto,https://github.com/deepmind/pysc2/releases/download/v1.0/mini_games.zip

(5)进入星际争霸2的目录

(6)创建Maps文件夹

(7)将Map Packs和mini-game压缩包都解压到Maps目录下,密码是iagreetotheeula

(8)打开终端,输入python -m pysc2.bin.agent --map Simple64进行测试。

下面为示意图:

大家可以看到在Mac下既显示了原始的游戏画面,又显示了feature的画面。

3.2 Ubuntu环境下安装

(1)安装pysc2 (和Mac相同)

(2)下载Linux版本的星际2: Blizzard/s2client-proto 并解压在Home目录下,解压密码:iagreetotheeula

(3)下载Map Packs,mini-game:Blizzard/s2client-proto,https://github.com/deepmind/pysc2/releases/download/v1.0/mini_games.zip。将文件解压到~/StarCraft2/Maps 下。

(4)打开终端,输入python -m pysc2.bin.agent --map Simple64进行测试。

下面为两个不同地图的示意图:

Linux下没有原始游戏画面。

4 测试

(1)基本测试

python -m pysc2.bin.agent --map Simple64

(2)更改Map如使用天梯的Map

python -m pysc2.bin.agent --map AbyssalReef

注意天梯的Map 名称没有LE!

(3)不使用agent,手动玩

python -m pysc2.bin.play --map MoveToBeacon

(4)使用特定agent来玩(比如MoveToBeacon这个mini game)

python -m pysc2.bin.agent --map MoveToBeacon --agent pysc2.agents.scripted_agent.MoveToBeacon

(5)播放replay

python --m pysc2.bin.play --replay <path-to-replay>

5 如何进行RL开发

前面只是安装,到这里才是最关键的。要知道如何进行RL开发,要首先知道pysc2的代码是如何运行的。

在上一小结测试中,我们看到第四种可以指定agent。所以,我们可以自己编写一个agent文件,从而使得环境运行我们自己的agent:

python -m pysc2.bin.agent --map <Map> --agent <Agent>

那么如何来编写这个agent呢?

pysc2的代码中为什么构建了一个BaseAgent,我们只需要在BaseAgent的基础上,构造一个新的agent的类,然后在里面的step函数中实现我们的RL算法即可。

基本的程序架构如下:

from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionimport numpyfrom pysc2.agents import base_agentfrom pysc2.lib import actionsfrom pysc2.lib import featuresclass OurAgent(base_agent.BaseAgent):

  def step(self, obs):
    super(OurAgent, self).step(obs)
    #----------------------------------#
    RL Algorithm Here
    #----------------------------------#
    return action

其中obs包含所有的观察信息,包括feature maps,reward及可执行动作actions等信息。step这个函数的目标是输出动作给环境执行。RL算法需要处理obs然后输出action。

我们来看一下pysc2提供的MoveToBeacon的非智能算法:

from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionimport numpyfrom pysc2.agents import base_agentfrom pysc2.lib import actionsfrom pysc2.lib import features_PLAYER_RELATIVE = features.SCREEN_FEATURES.player_relative.index_PLAYER_FRIENDLY = 1_PLAYER_NEUTRAL = 3  # beacon/minerals_PLAYER_HOSTILE = 4_NO_OP = actions.FUNCTIONS.no_op.id_MOVE_SCREEN = actions.FUNCTIONS.Move_screen.id_ATTACK_SCREEN = actions.FUNCTIONS.Attack_screen.id_SELECT_ARMY = actions.FUNCTIONS.select_army.id_NOT_QUEUED = [0]_SELECT_ALL = [0]class MoveToBeacon(base_agent.BaseAgent):
  """An agent specifically for solving the MoveToBeacon map."""

  def step(self, obs):
    super(MoveToBeacon, self).step(obs)
    if _MOVE_SCREEN in obs.observation["available_actions"]:
      player_relative = obs.observation["screen"][_PLAYER_RELATIVE]
      neutral_y, neutral_x = (player_relative == _PLAYER_NEUTRAL).nonzero()
      if not neutral_y.any():
        return actions.FunctionCall(_NO_OP, [])
      target = [int(neutral_x.mean()), int(neutral_y.mean())]
      return actions.FunctionCall(_MOVE_SCREEN, [_NOT_QUEUED, target])
    else:
      return actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])

我们可以看到,上面的代码直接获取了beacon的位置信息(neutral_y,neutral_x),从而直接给出动作。但是为了使用RL算法,我们需要获取feature map的图像信息。然后我发现上面代码中的player_relative就是图像信息,可以直接通过opencv或者plt输出显示。如下图最右边的显示:

下面总结一下state , action, reward的获取方式:

(1)state,也就是各种feature map,通过obs.observation["screen"][feature_map_name] 获取

(2)action,可以使用的action,通过obs.observation["available_actions"] 获取

(3)reward,通过obs.reward获取。

知道这些RL关键信息的获取,我们也就可以编写RL代码来玩星际2的小任务了。

值得注意的是,星际2的动作actions非常复杂,pysc2把动作封装成带参数的函数。比如上面的Move动作,需要target目标位置的2维参数。所以,如果输出动作是一个复杂的问题。官方的论文中使用了auto-regressive自回归的方式,也就是先输出Move这个动作,然后在此基础上再输出target,从而形成完整的动作,最后输出。

5 小结

本文对SC2LE进行了初体验,包括安装,测试和RL开发的代码研究。整体来看,DeepMind这次联合暴雪确实做了非常精良的代码工作,SC2LE有以下几个优点:

  1. 对于API封装得很好,可以非常方便的进行RL开发
  2. 直接提供了Feature Map信息方便卷积神经网络CNN的使用。
  3. 跨平台支持,特别是对Linux平台的支持,非常方便广大深度学习开发者的使用。
  4. 提供Replay数据库及Replay接口,为进行imitation learning模仿学习的研究提供了极大的方便。
  5. 提供了Mini Game,方便大家从简单入手。
  6. 提供了天梯地图,满足大家挑战高难度的欲望!

总的来说,SC2LE真的是非常友好的一个研究平台,值得大家入手研究,也相信未来会有越来越多的人工智能玩星际2的成果出来!

原文地址:https://zhuanlan.zhihu.com/p/28471863

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-08-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CDA数据分析师

什么数据库最适合数据分析师

数据分析师都想使用数据库作为数据仓库处理并操作数据,那么哪一款数据库最合适分析师呢?虽然网上已经有很多对各种数据库进行比较的文章,但其着眼点一般都是架构、成本、...

1965
来自专栏小白课代表

Autodesk Navisworks 2019 安装教程。

Autodesk Navisworks软件能够将AutoCAD和Revit®系列等应用创建的设计数据,与来自其它设计工具的几何图形和信息相结合,将其作为整体的三...

532
来自专栏SAP最佳业务实践

想学FM系列(13)-SAP FM模块:预算结构(4)-预算结构配置-层次结构

4)激活多级预算结构 ? 指定财务管理范围激活多级预算结构。如果激活后,在某一年度想要不激活多层级预算结构,需加一条配置,从该这一年度不激活,“激活”参数不选即...

3547
来自专栏小狼的世界

Bing Video 来了

当中文的 MSN Video 还处于 beta 版的时候,美国的 MSN Video 已经开始向 Bing 融合了。看来微软真的是想要不断地加强 Bing 这个...

692
来自专栏大数据文摘

数学烂也要学AI | 带你造一个经济试用版AI终极必杀器

2729
来自专栏Albert陈凯

Spark和MapReduce相比,都有哪些优势?

在实际应用中,由于MapReduce在大量数据处理时存在高延迟的问题,导致Hadoop无力处理很多对时间有要求的场景,越来越多的公司开始采用Spark作为与计算...

3275
来自专栏企鹅号快讯

PowerStager:一款拥有独特混淆技术的恶意工具正在崛起

“用指尖改变世界” ? Palo Alto Networks公司警告说,自2017年4月以来,一种恶意工具已经成为人们关注的焦点之一。这主要原因是由于它采用了相...

1857
来自专栏PPV课数据科学社区

【观点】最适合数据分析师的数据库为什么不是MySQL?!

数据分析师都想使用数据库作为数据仓库处理并操作数据,那么哪一款数据库最合适分析师呢? 虽然网上已经有很多对各种数据库进行比较的文章,但其着眼点一般都是架构、成...

2555
来自专栏AhDung

【T-SQL】分布抽取部分数据

好吧,我确实不知道该怎么起这个标题,整了一个“分布”,感觉还有点高档,其实没啥技术含量,看完你就知道了。情况是这样,刚刚接到一个临时任务,需要让几个营业点的销售...

782
来自专栏小白课代表

Autodesk Navisworks 2015 安装教程。

Autodesk Navisworks软件能够将AutoCAD和Revit®系列等应用创建的设计数据,与来自其它设计工具的几何图形和信息相结合,将其作为整体的三...

632

扫码关注云+社区