详解 30个数学模型

模型思想是新课标提倡的三大数学思想(抽象、推理、模型)之一,也就是“建模”,是教师在平时教学中要帮助自己的学生,不断地将现实中的实际问题抽象成数学模型并进行解释和运用。在小学数学教学中,“建模”的过程就是将实际问题用数学的方式表达的过程,也就是常说的“数学化”,是学生在数学学科学习中获得某种带有“模型”意义的数学结构的过程。

根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM方法。

数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:

(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等。 (2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。

在体育实践中常常提到优秀运动员的数学模型。如经调查统计现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。

用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。

静态和动态模型:静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用的系统的传递函数也是动态模型,因为它是从描述系统的微分方程变换而来的(见拉普拉斯变换)。 分布参数和集中参数模型:分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。 连续时间和离散时间模型:模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。 随机性和确定性模型:随机性模型中变量之间关系是以统计值或概率分布的形式给出的,而在确定性模型中变量间的关系是确定的。 参数与非参数模型:用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型。建立参数模型就在于确定已知模型结构中的各个参数。通过理论分析总是得出参数模型。非参数模型是直接或间接地从实际系统的实验分析中得到的响应,例如通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型。运用各种系统辨识的方法,可由非参数模型得到参数模型。如果实验前可以决定系统的结构,则通过实验辨识可以直接得到参数模型。 线性和非线性模型:线性模型中各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在允许的情况下,非线性模型往往可以线性化为线性模型,方法是把非线性模型在工作点邻域内展成泰勒级数,保留一阶项,略去高阶项,就可得到近似的线性模型。

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2016-08-03

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

CVPR 2018 | 逆视觉问答任务:一种根据回答与图像想问题的模型

随着传统的目标检测和目标识别方法的发展,很多问题已经得到了解决,人们对于解决更具挑战性的问题的兴趣也在激增,这些问题需要计算机视觉系统更好的「理解」能力。图像描...

1050
来自专栏磐创AI技术团队的专栏

粒子群优化算法(PSO)之基于离散化的特征选择(FS)(一)

前言:在机器学习中,离散化(Discretization)和特征选择(Feature Selection,FS)是预处理数据的重要技术,提高了算法在高维数据上的...

3045
来自专栏新智元

10000+谷歌员工学过的谷歌内部图像分类课程公开了!

1013
来自专栏橙、

机器学习需要多少数据进行训练?

你需要的数据量取决于问题的复杂程度和算法的复杂程度。

8887
来自专栏AI科技评论

终于盼来了Hinton的Capsule新论文,它能开启深度神经网络的新时代吗?

AI 科技评论按:眼见“深度学习教父”Geoffrey Hinton在许多场合谈到过自己正在攻关的“Capsule”之后,现在我们终于等到了这篇论文,得以具体感...

28010
来自专栏机器之心

从遗传算法到OpenAI新方向:进化策略工作机制全解

3455
来自专栏机器之心

NLP领域的ImageNet时代到来:词嵌入「已死」,语言模型当立

长期以来,词向量一直是自然语言处理的核心表征技术。然而,其统治地位正在被一系列令人振奋的新挑战所动摇,如:ELMo、ULMFiT 及 OpenAI transf...

1713
来自专栏大数据文摘

深度学习论文阅读路线图

1943
来自专栏AI科技评论

干货 | CNN 是如何处理图像中不同位置的对象的?

AI 科技评论按:这篇博客来自 Jetpac(现被谷歌收购) CTO、苹果毕业生、TensorFlow 团队成员 Pete Warden。文中讨论了当要识别的对...

1142
来自专栏量子位

今天要去清华听LeCun演讲?你需要这份笔记(另附:视频+PPT)

若朴 发自 凹非寺 量子位·QbitAI 报道 ? △ 这张票有点抢手 早就没票了。 今天下午,Facebook人工智能研究院院长Yann LeCun,将在清华...

33411

扫码关注云+社区