NLTK学习笔记(二)

词意消歧

在词意消歧中,我们要算出特定上下文中的词被赋予的是哪个意思。

思考存在歧义的词 serve 和 dish:

(1)

a. serve: help with food or drink; hold an office; put ball into play

b. dish: plate; course of a meal; communications device

在包含短语 he served the dish 的句子中,你可以知道 serve 和 dish 都用的是它们与食 物相关的含义。在短短的 3 个词的地方,讨论的话题不太可能从体育转向陶器。这也许会迫 使你眼前产生一幅怪异的画面:一个职业网球手正把他的郁闷发泄到放在网球场边上的陶瓷 茶具上。

换句话说,自动消除歧义需要使用上下文,利用相邻词汇有相近含义这样一个简单 的事实。在另一个有关上下文影响的例子是词 by,它有几种含义,例如:the book by Che sterton(施事——Chesterton 是书的作者);the cup by the stove(位置格——炉子在杯子旁 边);submit by Friday(时间——星期五前提交)。观察(2)中斜体字的含义有助于我们解释 by 的含义。

(2) 

a. The lost children were found by the searchers (施事)

b. The lost children were found by the mountain (位置格)

c. The lost children were found by the afternoon (时间)

指代消解

一种更深刻的语言理解是解决“谁对谁做了什么”,即检测主语和动词的宾语。

虽然你在 小学已经学会了这些,但它比你想象的更难。在句子 the thieves stole the paintings 中,很 容易分辨出谁做了偷窃的行为。

考虑(1)中句子的三种可能,尝试确定是什么被出售、被抓 和被发现(其中一种情况是有歧义的)。

(1)

a. The thieves stole the paintings. They were subsequently sold.

b. The thieves stole the paintings. They were subsequently caught.

c. The thieves stole the paintings. They were subsequently found.

要回答这个问题涉及到寻找代词 they 的先行词 thieves 或者 paintings。处理这个问题的 计算技术包括指代消解(anaphora resolution)——确定代词或名词短语指的是什么——和 语义角色标注(semantic role labeling)——确定名词短语如何与动词相关联(如施事,受 事,工具等)。

自动生成语言

如果我们能够解决自动语言理解等问题,我们将能够继续那些包含自动生成语言的任 务,如自动问答和机器翻译。

在自动问答中,一台机器要能够回答用户关于特定文本集的问 题:

(1)

a. Text: ... The thieves stole the paintings. They were subsequently sold. ...

b. Human: Who or what was sold?

c. Machine: The paintings.

机器的回答表明,它已经正确的计算出 they 是指 paintings,而不是 thieves。在机器翻 译中,机器要能够把文本翻译成另一种语言文字,并准确传达原文的意思。

在把例子文本译成法文过程中,我们不得不在第二句选择代词的性别:ils(男性)如果 thieves 被出售,ell es(女性)如果 paintings 被出售。正确的翻译实际上取决于对代词的正确理解。

(2)

a. The thieves stole the paintings. They were subsequently found.

b. Les voleurs ont volé les peintures. Ils ont été trouvés plus tard. (the thieves)

c. Les voleurs ont volé les peintures. Elles ont été trouvées plus tard. (the paintings)

所有这些例子中,弄清楚词的含义、动作的主语以及代词的先行词是理解句子含义的步 骤,也是我们希望语言理解系统能够做到的事情。

机器翻译

长久以来,机器翻译(MT)都是语言理解的圣杯,人们希望能找到从根本上提供高品 质的符合语言习惯的任意两种语言之间的翻译。其历史可以追溯到冷战初期,当时自动翻译 的许诺带来大量的政府赞助,它也是 NLP 本身的起源。

今天,特定语言之间实用的翻译系统已经存在,有些已经集成到搜索引擎中了。但是, 这些系统有一些严重的缺点。

我们可以在 NLTK 的“babelizer”的帮助下探索它们(当你使用 from nltk.book import * 导入本章的材料时,已经自动装载了)。这个程序把提交的英 文句子翻译成指定语言,然后把结果重新翻译回英文。这样重复 12 次结束或者得到曾经产 生过的翻译时(表示一个循环)结束。

>>> babelize_shell()

NLTK Babelizer: type 'help' for a list of commands.

Babel> how long before the next flight to Alice Springs?

Babel> german

Babel> run

0> how long before the next flight to Alice Springs?

1> wie lang vor dem folgenden Flug zu Alice Springs?

2> how long before the following flight to Alice jump?

3> wie lang vor dem folgenden Flug zu Alice springen Sie?

4> how long before the following flight to Alice do you jump?

5> wie lang, bevor der folgende Flug zu Alice tun, Sie springen?

6> how long, before the following flight to Alice does, do you jump?

7> wie lang bevor der folgende Flug zu Alice tut, tun Sie springen?

8> how long before the following flight to Alice does, do you jump?

9> wie lang, bevor der folgende Flug zu Alice tut, tun Sie springen?

10> how long, before the following flight does to Alice, do do you jump?

11> wie lang bevor der folgende Flug zu Alice tut, Sie tun Sprung?

12> how long before the following flight does leap to Alice, does you?

请看,该系统正确地把 Alice Springs 从英文翻译成了德文(第 1 行),但在翻译回英文 时却以 Alice jump 结束(第 2 行)。介词 before 一开始被翻译成对应的德文介词 vor,但后 来变成了连词 bevor(第 5 行)。第 5 行以后的句子变的没有意义(但请注意以逗号指示的各 种分句,以及从 jump 到 leap 的变化)。翻译系统不能识别一个词是某个名字的一部分,并 且弄错了语法结构。语法问题在下面的例子中更加明显。是约翰发现了猪,还是猪找到约翰?

>>> babelize_shell()

Babel> The pig that John found looked happy

Babel> german

Babel> run

0> The pig that John found looked happy

1> Das Schwein, das John fand, schaute gl?cklich

2> The pig, which found John, looked happy

机器翻译是困难的,因为一个给定的词可能有几种不同的解释(取决于它的意思),也 因为必须改变词序才能与目标语言的语法结构保持一致。

今天,这些困难遇到新情况,从新 闻和政府网站发布的两种或两种以上的语言文档中可以收集到大量的相似文本。给出一个德 文和英文双语的文档或者一个双语词典,我们就可以自动配对组成句子,这个过程叫做文本 对齐。一旦我们有一百万或更多的句子对,就可以检测出相应的词和短语,并建立一个能用 来翻译新文本的模型。

(注意:这里要使用机器翻译需要下载完整的nltk包,只下载book包在run的时候是会报错的)

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏牛客网

机器学习算法面筋

蛮感谢牛客网的,拿到了些二线互联网的算法offer,待遇达到了牛客网起薪水平,哈哈,不过看到身边不少是一线互联网sp,打算蛰伏,等待机会,打个翻身战。在多说一句...

3323
来自专栏大数据挖掘DT机器学习

【趣味】数据挖掘(5)—分房与分类

中老年回顾歌曲集中有这样一首歌:月亮在白莲花般的云朵里穿行,晚风吹来一阵阵欢乐的歌声,我们坐在高高的谷堆旁边,听妈妈讲那过去的事情……   歌词美,旋律也美...

2603
来自专栏AI研习社

手把手教你用 R 语言分析歌词

翻译 | 刘朋 Noddleslee 程思婕 余杭 整理 | 凡江

1223
来自专栏华章科技

大数据时代的网络分析,如何全盘挖掘大数据?

我们生活在一个互联实体(entities)构成的复杂世界中。人类涉足的所有领域,从生物学到医学、经济学和气候科学,都充满了大规模数据集。

756
来自专栏Python中文社区

1个掷硬币问题,4个Python解法

專 欄 ❈本文作者:王勇,目前感兴趣项目商业分析、Python、机器学习、Kaggle。17年项目管理,通信业干了11年项目经理管合同交付,制造业干了6年项目...

2019
来自专栏PPV课数据科学社区

【学习】趣味数据挖掘——借水浒传故事,释决策树思路

决策树(又称判定树,DecisionTree)是硕、博士生数据挖掘课程要点和难点,教学实践表明,这一章需要数学基础知识多,难得有趣。明知是难点,偏向难点行,再难...

3234
来自专栏生信宝典

扩增子图表解读1箱线图:Alpha多样性,老板再也不操心的我文献阅读了

作者: 刘永鑫 日期:2017-6-17 阅读时长:10 min 宏基因组学 宏基因组学目前的主要研究方法包括:16S/ITS/18S扩增子、宏基因组、宏转录...

2176
来自专栏黄成甲

数据分析之相关分析

描述性分析只能分析数据呈现出来的基本特征,不能挖掘变量之间深层次的关系,无法为后期模型的建立及预测做准备。这个时候就需要掌握推断性分析方法,第一个方法就是相关分...

422
来自专栏生信宝典

贝叶斯学习记录

这篇文章用于记录学习贝叶斯定理及其应用过程中的记录,希望由浅及深的提供一份自我学习教程。 引子 概率的定义:概率是一个0-1之间的数,代表了我们对某个事实或预测...

1666
来自专栏大数据文摘

12位古代数学家的现代化成就

1277

扫描关注云+社区