[Python]从豆瓣批量获取看过电影的用户列表,并应用kNN算法预测用户性别

首先从豆瓣电影的“看过这部电影 的豆瓣成员”页面上来获取较为活跃的豆瓣电影用户。

链接分析

这是看过"模仿游戏"的豆瓣成员的网页链接:http://movie.douban.com/subject/10463953/collections。

一页上显示了20名看过这部电影的豆瓣用户。当点击下一页时,当前连接变为:http://movie.douban.com/subject/10463953/collections?start=20。

由此可知,当请求下一页内容时,实际上就是将"start"后的索引增加20。

因此,我们可以设定base_url='http://movie.douban.com/subject/10463953/collections?start=',i=range(0,200,20),在循环中url=base_url+str(i)。

之所以要把i的最大值设为180,是因为后来经过测试,豆瓣只给出看过一部电影的最近200个用户。

读取网页

在访问时我设置了一个HTTP代理,并且为了防止访问频率过快而被豆瓣封ip,每读取一个网页后都会调用time.sleep(5)等待5秒。 在程序运行的时候干别的事情好了。

网页解析

本次使用BeautifulSoup库解析html。 每一个用户信息在html中是这样的:

  <table width="100%" class="">
  <tr>
      <td width="80" valign="top">
          <a href="http://movie.douban.com/people/46770381/">
              <img class="" src="http://img4.douban.com/icon/u46770381-16.jpg" alt="七月" />
          </a>
      </td>
      <td valign="top">
          <div class="pl2">
              <a href="http://movie.douban.com/people/46770381/" class="">七月                  <span style="font-size:12px;">(银川)</span>
              </a>
          </div>
          <p class="pl">2015-08-23                  &nbsp;<span class="allstar40" title="推荐"></span>
          </p>
      </td>
  </tr>
  </table>

首先用读取到的html初始化soup=BeautifulSoup(html)。本次需要的信息仅仅是用户id和用户的电影主页,因此真正有用的信息在这段代码中:

  <td width="80" valign="top">
      <a href="http://movie.douban.com/people/46770381/">
          <img class="" src="http://img4.douban.com/icon/u46770381-16.jpg" alt="七月" />
      </a>
  </td>

因此在Python代码中通过td_tags=soup.findAll('td',width='80',valign='top')找到所有<td width="80" valign="top">的块。

td=td_tags[0],a=td.a就可以得到

  <a href="http://movie.douban.com/people/46770381/">
      <img class="" src="http://img4.douban.com/icon/u46770381-16.jpg" alt="七月" />
  </a>

通过link=a.get('href')可以得到href属性,也就用户的电影主页链接。然后通过字符串查找也就可以得到用户ID了。

完整代码

 1 #coding=utf-8 
 2 ##从豆瓣网页中得到用户id 
 3  
 4 ##网页地址类型:http://movie.douban.com/subject/26289144/collections?start=0 
 5 ##http://movie.douban.com/subject/26289144/collections?start=20 
 6  
 7 from BeautifulSoup import BeautifulSoup 
 8 import codecs 
 9 import time10 import urllib2
 
11 
12 baseUrl='http://movie.douban.com/subject/25895276/collections?start='

13 
14 proxyInfo='127.0.0.1:8087'

15 proxySupport=urllib2.ProxyHandler({'http':proxyInfo})

16 opener=urllib2.build_opener(proxySupport)

17 urllib2.install_opener(opener)

18 
19 
20 #将用户信息(id,主页链接)保存至文件

21 def saveUserInfo(idList,linkList):
 
22     if len(idList)!=len(linkList):

23         print 'Error: len(idList)!=len(linkList) !'

24         return

25     writeFile=codecs.open('UserIdList3.txt','a','utf-8')

26     size=len(idList)

27     for i in range(size):
 
28         writeFile.write(idList[i]+'\t'+linkList[i]+'\n')

29     writeFile.close()
    
30 
31 #从给定html文本中解析用户id和连接

32 def parseHtmlUserId(html):
 
33     idList=[]   #返回的id列表

34     linkList=[] #返回的link列表

35 
36     soup=BeautifulSoup(html)

37     ##<td width="80" valign="top">

38     ##<a href="http://movie.douban.com/people/liaaaar/">

39     ##<img class="" src="/u3893139-33.jpg" alt="Liar." />

40     ##</a>

41     ##</td>

42     td_tags=soup.findAll('td',width='80',valign='top')

43     i=0

44     for td in td_tags:
 
45         #前20名用户是看过这部电影的,

46         #而后面的只是想看这部电影的用户,因此舍弃

47         if i==20:

48             break

49         a=td.a

50         link=a.get('href')

51         i_start=link.find('people/')

52         id=link[i_start+7:-1]

53         idList.append(id)
        
54         linkList.append(link)
        
55         i+=1
56     return (idList,linkList)
 
57 
58 #返回指定编号的网页内容

59 def getHtml(num):
 
60     url=baseUrl+str(num)

61     page=urllib2.urlopen(url)

62     html=page.read()

63     return html
 
64 
65 def launch():
 
66     #指定起始编号:20的倍数

67     ques=raw_input('Start from number?(Multiples of 20) ')

68     startNum=int(ques)

69     if startNum%20 != 0:
 
70         print 'Input number error!'

71         return

72     for i in range(startNum,200,20):

73         print 'Loading page %d/200 ...' %(i+1)

74         html=getHtml(i)

75         (curIdList,curLinkList)=parseHtmlUserId(html)

76         saveUserInfo(curIdList,curLinkList)
        
77         print 'Sleeping.'

78         time.sleep(5)

应用kNN算法预测豆瓣电影用户的性别

本文认为不同性别的人偏好的电影类型会有所不同,因此进行了此实验。利用较为活跃的274位豆瓣用户最近观看的100部电影,对其类型进行统计,以得到的37种电影类型作为属性特征,以用户性别作为标签构建样本集。使用kNN算法构建豆瓣电影用户性别分类器,使用样本中的90%作为训练样本,10%作为测试样本,准确率可以达到81.48%。

实验数据

本次实验所用数据为豆瓣用户标记的看过的电影,选取了274位豆瓣用户最近看过的100部电影。对每个用户的电影类型进行统计。本次实验所用数据中共有37个电影类型,因此将这37个类型作为用户的属性特征,各特征的值即为用户100部电影中该类型电影的数量。用户的标签为其性别,由于豆瓣没有用户性别信息,因此均为人工标注。

数据格式如下所示: X1,1,X1,2,X1,3,X1,4……X1,36,X1,37,Y1 X2,1,X2,2,X2,3,X2,4……X2,36,X2,37,Y2 ………… X274,1,X274,2,X274,3,X274,4……X274,36,X274,37,Y274

示例: 0,0,0,3,1,34,5,0,0,0,11,31,0,0,38,40,0,0,15,8,3,9,14,2,3,0,4,1,1,15,0,0,1,13,0,0,1,1 0,1,0,2,2,24,8,0,0,0,10,37,0,0,44,34,0,0,3,0,4,10,15,5,3,0,0,7,2,13,0,0,2,12,0,0,0,0

像这样的数据一共有274行,表示274个样本。每一个的前37个数据是该样本的37个特征值,最后一个数据为标签,即性别:0表示男性,1表示女性。

kNN算法

k-近邻算法(KNN),是最基本的分类算法,其基本思想是采用测量不同特征值之间的距离方法进行分类。

算法原理:存在一个样本数据集合(训练集),并且样本集中每个数据都存在标签(即每一数据与所属分类的关系已知)。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较(计算欧氏距离),然后提取样本集中特征最相似数据(最近邻)的分类标签。一般会取前k个最相似的数据,然后取k个最相似数据中出现次数最多的标签(分类)最后新数据的分类。

在此次试验中取样本的前10%作为测试样本,其余作为训练样本。

首先对所有数据归一化。对矩阵中的每一列求取最大值(max_j)、最小值(min_j),对矩阵中的数据X_j, X_j=(X_j-min_j)/(max_j-min_j) 。

然后对于每一条测试样本,计算其与所有训练样本的欧氏距离。测试样本i与训练样本j之间的距离为:

distance_i_j=sqrt((Xi,1-Xj,1)^2+(Xi,2-Xj,2)^2+……+(Xi,37-Xj,37)^2) , 对样本i的所有距离从小到大排序,在前k个中选择出现次数最多的标签,即为样本i的预测值。

实验结果

首先选择一个合适的k值。 对于k=1,3,5,7,均使用同一个测试样本和训练样本,测试其正确率,结果如下表所示。

表1 选取不同k值的正确率表

k

1

3

5

7

测试集1

62.96%

81.48%

70.37%

77.78%

测试集2

66.67%

66.67%

59.26%

62.96%

测试集3

62.96%

74.07%

70.37%

74.07%

平均值

64.20%

74.07%

66.67%

71.60%

由上述结果可知,在k=3时,测试的平均正确率最高,为74.07%,最高可以达到81.48%。

上述不同的测试集均来自同一样本集中,为随机选取所得。

Python代码

自己重新实现了一下kNN的代码,对上次的算法一小处(从k个近邻中选择频率最高的一项)做了简化。

from numpy import *
#打开数据文件,导出为矩阵,其中最后一列为类别
def fileToMatrix(filename, sep=','):
    f = open(filename)
    content = f.readlines()
    f.close()
    first_line_list = content[0].strip().split(sep)
    data_matrix = zeros( (len(content), len(first_line_list)-1) )
    label_vector = []
    index = 0
    for line in content:
        list_from_line = line.strip().split(sep)
        data_matrix[index,:] = list_from_line[0:-1]
        label_vector.append(int(list_from_line[-1]))
        index += 1
    return (data_matrix,label_vector)
def classify(inX, data_matrix, label_vector, k):
    diff_matrix = inX - data_matrix
    square_diff_matrix = diff_matrix ** 2
    square_distances = square_diff_matrix.sum(axis=1)
    sorted_indicies = square_distances.argsort()
    label_count = {}
    for i in range(k):
        cur_label = label_vector[ sorted_indicies[i] ]
        label_count[cur_label] = label_count.get(cur_label, 0) + 1
    max_count = 0
    nearest_label = None
    for label in label_count:
        count = label_count[label]
        if count > max_count:
            max_count = count
            nearest_label = label
    return nearest_label
def test(filename,k=3,sep=',',hold_ratio=0.3):
        data_matrix, label_vector = fileToMatrix(filename,sep=sep)
        data_num = data_matrix.shape[0]
        test_num = int(hold_ratio * data_num)
        train_num = data_num - test_num
        train_matrix = data_matrix[0:train_num,:]
        test_matrix = data_matrix[train_num:,:]
        train_label_vector = label_vector[0:train_num]
        test_label_vector = label_vector[train_num:]
        right_count = 0
        for i in range(test_num):
                inX = test_matrix[i,:]
                classify_result = classify(inX, train_matrix, train_label_vector, k)
                if classify_result == test_label_vector[i]:
                        right_count += 1
                print("  The classifier came back with: %d, the real answer is: %d" % (classify_result, test_label_vector[i]))
        accuracy = float(right_count)/float(test_num)
        print('The total accuracy is %f' % accuracy)

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2016-09-09

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏ATYUN订阅号

在TensorBoard中使用t-SNE实现TensorFlow自动编码器的可视化嵌入

将TensorBoard插在MNIST数据集上的一个自动编码器上,用于演示非监督机器学习的t-SNE嵌入的可视化。 需要说明的是,在这个项目中,我们有两种类型的...

5044
来自专栏Coding迪斯尼

vue+webpack实现精美游戏设计:实现建筑物的渐变生成效果

953
来自专栏大数据挖掘DT机器学习

用R解析Mahout用户推荐协同过滤算法(UserCF)

作者: 张丹(Conan), 程序员Java,R,PHP,Javascript http://blog.fens.me 前言 用R全面解析Mahout的基于用...

36912
来自专栏小詹同学

Python系列之三——人脸检测、人脸识别

之前有利用C++和OpenCv写过人脸识别的系列文章,对于人脸识别的基本理解和步骤流程等基本知识不做反复叙述。比詹小白还要白的童鞋可以查看往期文章进行了解噢...

3686
来自专栏极客猴

Python 实现识别弱图片验证码

目前,很多网站为了防止爬虫肆意模拟浏览器登录,采用增加验证码的方式来拦截爬虫。验证码的形式有多种,最常见的就是图片验证码。其他验证码的形式有音频验证码,滑动验证...

2632
来自专栏人工智能LeadAI

Keras同时用多张显卡训练网络

References 官方文档:multi_gpu_model(https://keras.io/utils/#multi_gpu_model)以及Google...

6348
来自专栏机器之心

教程 | PyTorch经验指南:技巧与陷阱

项目地址:https://github.com/Kaixhin/grokking-pytorch

3011
来自专栏AI研习社

Github 项目推荐 | 用 PyTorch 实现全局/局部一致图像补全

本库用 PyTorch 实现了全局/局部一致图像补全(Globally and Locally Consistent Image Completion )。

1512
来自专栏一心无二用,本人只专注于基础图像算法的实现与优化。

PhotoShop算法原理解析系列 - 风格化---》查找边缘。                  闲谈.Net类型之public的不public,fixed的不能fixed     当然这个还可

      之所以不写系列文章一、系列文章二这样的标题,是因为我不知道我能坚持多久。我知道我对事情的表达能力和语言的丰富性方面的天赋不高。而一段代码需要我去用心...

2729
来自专栏数据小魔方

创意滑珠图!

今天要给大家分享的是一种非常有趣的滑珠图! ▽ 本文要讲解的滑珠图做法,稍微有点复杂。不过这种滑珠图在数据对比展示中,效果奇佳。小魔方参考多处教程和资料,终于还...

2754

扫码关注云+社区