[Python]从豆瓣批量获取看过电影的用户列表,并应用kNN算法预测用户性别

首先从豆瓣电影的“看过这部电影 的豆瓣成员”页面上来获取较为活跃的豆瓣电影用户。

链接分析

这是看过"模仿游戏"的豆瓣成员的网页链接:http://movie.douban.com/subject/10463953/collections。

一页上显示了20名看过这部电影的豆瓣用户。当点击下一页时,当前连接变为:http://movie.douban.com/subject/10463953/collections?start=20。

由此可知,当请求下一页内容时,实际上就是将"start"后的索引增加20。

因此,我们可以设定base_url='http://movie.douban.com/subject/10463953/collections?start=',i=range(0,200,20),在循环中url=base_url+str(i)。

之所以要把i的最大值设为180,是因为后来经过测试,豆瓣只给出看过一部电影的最近200个用户。

读取网页

在访问时我设置了一个HTTP代理,并且为了防止访问频率过快而被豆瓣封ip,每读取一个网页后都会调用time.sleep(5)等待5秒。 在程序运行的时候干别的事情好了。

网页解析

本次使用BeautifulSoup库解析html。 每一个用户信息在html中是这样的:

  <table width="100%" class="">
  <tr>
      <td width="80" valign="top">
          <a href="http://movie.douban.com/people/46770381/">
              <img class="" src="http://img4.douban.com/icon/u46770381-16.jpg" alt="七月" />
          </a>
      </td>
      <td valign="top">
          <div class="pl2">
              <a href="http://movie.douban.com/people/46770381/" class="">七月                  <span style="font-size:12px;">(银川)</span>
              </a>
          </div>
          <p class="pl">2015-08-23                  &nbsp;<span class="allstar40" title="推荐"></span>
          </p>
      </td>
  </tr>
  </table>

首先用读取到的html初始化soup=BeautifulSoup(html)。本次需要的信息仅仅是用户id和用户的电影主页,因此真正有用的信息在这段代码中:

  <td width="80" valign="top">
      <a href="http://movie.douban.com/people/46770381/">
          <img class="" src="http://img4.douban.com/icon/u46770381-16.jpg" alt="七月" />
      </a>
  </td>

因此在Python代码中通过td_tags=soup.findAll('td',width='80',valign='top')找到所有<td width="80" valign="top">的块。

td=td_tags[0],a=td.a就可以得到

  <a href="http://movie.douban.com/people/46770381/">
      <img class="" src="http://img4.douban.com/icon/u46770381-16.jpg" alt="七月" />
  </a>

通过link=a.get('href')可以得到href属性,也就用户的电影主页链接。然后通过字符串查找也就可以得到用户ID了。

完整代码

 1 #coding=utf-8 
 2 ##从豆瓣网页中得到用户id 
 3  
 4 ##网页地址类型:http://movie.douban.com/subject/26289144/collections?start=0 
 5 ##http://movie.douban.com/subject/26289144/collections?start=20 
 6  
 7 from BeautifulSoup import BeautifulSoup 
 8 import codecs 
 9 import time10 import urllib2
 
11 
12 baseUrl='http://movie.douban.com/subject/25895276/collections?start='

13 
14 proxyInfo='127.0.0.1:8087'

15 proxySupport=urllib2.ProxyHandler({'http':proxyInfo})

16 opener=urllib2.build_opener(proxySupport)

17 urllib2.install_opener(opener)

18 
19 
20 #将用户信息(id,主页链接)保存至文件

21 def saveUserInfo(idList,linkList):
 
22     if len(idList)!=len(linkList):

23         print 'Error: len(idList)!=len(linkList) !'

24         return

25     writeFile=codecs.open('UserIdList3.txt','a','utf-8')

26     size=len(idList)

27     for i in range(size):
 
28         writeFile.write(idList[i]+'\t'+linkList[i]+'\n')

29     writeFile.close()
    
30 
31 #从给定html文本中解析用户id和连接

32 def parseHtmlUserId(html):
 
33     idList=[]   #返回的id列表

34     linkList=[] #返回的link列表

35 
36     soup=BeautifulSoup(html)

37     ##<td width="80" valign="top">

38     ##<a href="http://movie.douban.com/people/liaaaar/">

39     ##<img class="" src="/u3893139-33.jpg" alt="Liar." />

40     ##</a>

41     ##</td>

42     td_tags=soup.findAll('td',width='80',valign='top')

43     i=0

44     for td in td_tags:
 
45         #前20名用户是看过这部电影的,

46         #而后面的只是想看这部电影的用户,因此舍弃

47         if i==20:

48             break

49         a=td.a

50         link=a.get('href')

51         i_start=link.find('people/')

52         id=link[i_start+7:-1]

53         idList.append(id)
        
54         linkList.append(link)
        
55         i+=1
56     return (idList,linkList)
 
57 
58 #返回指定编号的网页内容

59 def getHtml(num):
 
60     url=baseUrl+str(num)

61     page=urllib2.urlopen(url)

62     html=page.read()

63     return html
 
64 
65 def launch():
 
66     #指定起始编号:20的倍数

67     ques=raw_input('Start from number?(Multiples of 20) ')

68     startNum=int(ques)

69     if startNum%20 != 0:
 
70         print 'Input number error!'

71         return

72     for i in range(startNum,200,20):

73         print 'Loading page %d/200 ...' %(i+1)

74         html=getHtml(i)

75         (curIdList,curLinkList)=parseHtmlUserId(html)

76         saveUserInfo(curIdList,curLinkList)
        
77         print 'Sleeping.'

78         time.sleep(5)

应用kNN算法预测豆瓣电影用户的性别

本文认为不同性别的人偏好的电影类型会有所不同,因此进行了此实验。利用较为活跃的274位豆瓣用户最近观看的100部电影,对其类型进行统计,以得到的37种电影类型作为属性特征,以用户性别作为标签构建样本集。使用kNN算法构建豆瓣电影用户性别分类器,使用样本中的90%作为训练样本,10%作为测试样本,准确率可以达到81.48%。

实验数据

本次实验所用数据为豆瓣用户标记的看过的电影,选取了274位豆瓣用户最近看过的100部电影。对每个用户的电影类型进行统计。本次实验所用数据中共有37个电影类型,因此将这37个类型作为用户的属性特征,各特征的值即为用户100部电影中该类型电影的数量。用户的标签为其性别,由于豆瓣没有用户性别信息,因此均为人工标注。

数据格式如下所示: X1,1,X1,2,X1,3,X1,4……X1,36,X1,37,Y1 X2,1,X2,2,X2,3,X2,4……X2,36,X2,37,Y2 ………… X274,1,X274,2,X274,3,X274,4……X274,36,X274,37,Y274

示例: 0,0,0,3,1,34,5,0,0,0,11,31,0,0,38,40,0,0,15,8,3,9,14,2,3,0,4,1,1,15,0,0,1,13,0,0,1,1 0,1,0,2,2,24,8,0,0,0,10,37,0,0,44,34,0,0,3,0,4,10,15,5,3,0,0,7,2,13,0,0,2,12,0,0,0,0

像这样的数据一共有274行,表示274个样本。每一个的前37个数据是该样本的37个特征值,最后一个数据为标签,即性别:0表示男性,1表示女性。

kNN算法

k-近邻算法(KNN),是最基本的分类算法,其基本思想是采用测量不同特征值之间的距离方法进行分类。

算法原理:存在一个样本数据集合(训练集),并且样本集中每个数据都存在标签(即每一数据与所属分类的关系已知)。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较(计算欧氏距离),然后提取样本集中特征最相似数据(最近邻)的分类标签。一般会取前k个最相似的数据,然后取k个最相似数据中出现次数最多的标签(分类)最后新数据的分类。

在此次试验中取样本的前10%作为测试样本,其余作为训练样本。

首先对所有数据归一化。对矩阵中的每一列求取最大值(max_j)、最小值(min_j),对矩阵中的数据X_j, X_j=(X_j-min_j)/(max_j-min_j) 。

然后对于每一条测试样本,计算其与所有训练样本的欧氏距离。测试样本i与训练样本j之间的距离为:

distance_i_j=sqrt((Xi,1-Xj,1)^2+(Xi,2-Xj,2)^2+……+(Xi,37-Xj,37)^2) , 对样本i的所有距离从小到大排序,在前k个中选择出现次数最多的标签,即为样本i的预测值。

实验结果

首先选择一个合适的k值。 对于k=1,3,5,7,均使用同一个测试样本和训练样本,测试其正确率,结果如下表所示。

表1 选取不同k值的正确率表

k

1

3

5

7

测试集1

62.96%

81.48%

70.37%

77.78%

测试集2

66.67%

66.67%

59.26%

62.96%

测试集3

62.96%

74.07%

70.37%

74.07%

平均值

64.20%

74.07%

66.67%

71.60%

由上述结果可知,在k=3时,测试的平均正确率最高,为74.07%,最高可以达到81.48%。

上述不同的测试集均来自同一样本集中,为随机选取所得。

Python代码

自己重新实现了一下kNN的代码,对上次的算法一小处(从k个近邻中选择频率最高的一项)做了简化。

from numpy import *
#打开数据文件,导出为矩阵,其中最后一列为类别
def fileToMatrix(filename, sep=','):
    f = open(filename)
    content = f.readlines()
    f.close()
    first_line_list = content[0].strip().split(sep)
    data_matrix = zeros( (len(content), len(first_line_list)-1) )
    label_vector = []
    index = 0
    for line in content:
        list_from_line = line.strip().split(sep)
        data_matrix[index,:] = list_from_line[0:-1]
        label_vector.append(int(list_from_line[-1]))
        index += 1
    return (data_matrix,label_vector)
def classify(inX, data_matrix, label_vector, k):
    diff_matrix = inX - data_matrix
    square_diff_matrix = diff_matrix ** 2
    square_distances = square_diff_matrix.sum(axis=1)
    sorted_indicies = square_distances.argsort()
    label_count = {}
    for i in range(k):
        cur_label = label_vector[ sorted_indicies[i] ]
        label_count[cur_label] = label_count.get(cur_label, 0) + 1
    max_count = 0
    nearest_label = None
    for label in label_count:
        count = label_count[label]
        if count > max_count:
            max_count = count
            nearest_label = label
    return nearest_label
def test(filename,k=3,sep=',',hold_ratio=0.3):
        data_matrix, label_vector = fileToMatrix(filename,sep=sep)
        data_num = data_matrix.shape[0]
        test_num = int(hold_ratio * data_num)
        train_num = data_num - test_num
        train_matrix = data_matrix[0:train_num,:]
        test_matrix = data_matrix[train_num:,:]
        train_label_vector = label_vector[0:train_num]
        test_label_vector = label_vector[train_num:]
        right_count = 0
        for i in range(test_num):
                inX = test_matrix[i,:]
                classify_result = classify(inX, train_matrix, train_label_vector, k)
                if classify_result == test_label_vector[i]:
                        right_count += 1
                print("  The classifier came back with: %d, the real answer is: %d" % (classify_result, test_label_vector[i]))
        accuracy = float(right_count)/float(test_num)
        print('The total accuracy is %f' % accuracy)

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2016-09-09

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技大本营的专栏

学习笔记 | Fast.ai深度学习实战课程Lesson2——带你深入了解CNN

Fast.ai 深度学习是我们此前推出的系列课程,共9节课,并且已经进行了汉化。课程主讲人是资深深度学习研究者Jeremy Howard 教授,他本人连续两年在...

4328
来自专栏iOSDevLog

人工智能的 "hello world":在 iOS 实现 MNIST 数学识别MNIST: http://yann.lecun.com/exdb/mnist/ 目标步骤

3178
来自专栏take time, save time

你所能用到的无损压缩编码(一)

      这个系列将结合C/C++介绍无损压缩编码的实现,正如Charles Petzold在<CODE:Hidden Language of Compute...

45610
来自专栏灯塔大数据

分析 | Python抓取婚恋网用户数据,原来这才是年轻人的择偶观

刚好在看决策树这一章,书里面的理论和例子让我觉得这个理论和选择对象简直不能再贴切。看完长相看学历,看完学历看收入。

1213
来自专栏Spark学习技巧

案例:Spark基于用户的协同过滤算法

一 基于用户协同过滤简介 基于用户的协同过滤算法(user-based collaboratIve filtering) 基于用户的协同过滤算法是通过用户的历...

3106
来自专栏一心无二用,本人只专注于基础图像算法的实现与优化。

图像柔光效果(SoftGlow)的原理及其实现。

图像柔光效果在很多商业软件中都有实现,比如美图秀秀,光影魔术手等。其能针对原始图像产生一副新的比较平滑感觉光线比较柔和的效果,给人一种朦胧美,如下面几幅图所示...

20310
来自专栏SDNLAB

使用机器学习算法对流量分类的尝试(续)——关键报文的发现

导言 在上一篇文章《使用机器学习算法对流量分类的尝试——基于样本分类》(http://www.sdnlab.com/17324.html)中,我提供了一种使用朴...

3358
来自专栏PPV课数据科学社区

TensorFlow必知基础知识​

TensorFlow概要 Google第一代分布式机器学习框架DistBelief1,在内部大规模使用后并没有选择开源。而后第二代分布式机器学习系统Tenso...

3746
来自专栏编程

Python那些事——15分钟用Python破解验证码系统!

让我们一起攻破世界上最流行的WordPress的验证码插件 每个人都讨厌验证码——在你被允许访问一个网站之前,你总被要求输入那些烦人的图像中所包含的文本。 验证...

2369
来自专栏深度学习入门与实践

【原】KMeans与深度学习自编码AutoEncoder结合提高聚类效果

这几天在做用户画像,特征是用户的消费商品的消费金额,原始数据(部分)是这样的: 1 id goods_name goods_amount 2 1 ...

3587

扫描关注云+社区