开发 | 图片数据集太少?看我七十二变,Keras Image Data Augmentation 各参数详解

AI科技评论按,本文作者Professor ho,该文首发于知乎专栏Keras花式工具箱,AI科技评论获其授权转载。

图像深度学习任务中,面对小数据集,我们往往需要利用Image Data Augmentation图像增广技术来扩充我们的数据集,而keras的内置ImageDataGenerator很好地帮我们实现图像增广。但是面对ImageDataGenerator中众多的参数,每个参数所得到的效果分别是怎样的呢?本文针对Keras中ImageDataGenerator的各项参数数值的效果进行了详细解释,为各位深度学习研究者们提供一个参考。

我们先来看看ImageDataGenerator的官方说明(https://keras.io/preprocessing/image/):

keras.preprocessing.image.ImageDataGenerator(featurewise_center=False,
   samplewise_center=False,
   featurewise_std_normalization=False,
   samplewise_std_normalization=False,
   zca_whitening=False,
   zca_epsilon=1e-6,
   rotation_range=0.,
   width_shift_range=0.,
   height_shift_range=0.,
   shear_range=0.,
   zoom_range=0.,
   channel_shift_range=0.,
   fill_mode='nearest',
   cval=0.,
   horizontal_flip=False,
   vertical_flip=False,
   rescale=None,
   preprocessing_function=None,
   data_format=K.image_data_format())

官方提供的参数解释因为太长就不贴出来了,大家可以直接点开上面的链接看英文原介绍,我们现在就从每一个参数开始看看它会带来何种效果。

我们测试选用的是kaggle dogs vs cats redux 猫狗大战的数据集,随机选取了9张狗狗的照片,这9张均被resize成224×224的尺寸,如图1:

图1

1. featurewise

datagen = image.ImageDataGenerator(featurewise_center=True,
   featurewise_std_normalization=True)

featurewise_center的官方解释:"Set input mean to 0 over the dataset, feature-wise." 大意为使数据集去中心化(使得其均值为0),而samplewise_std_normalization的官方解释是“ Divide inputs by std of the dataset, feature-wise.”,大意为将输入的每个样本除以其自身的标准差。这两个参数都是从数据集整体上对每张图片进行标准化处理,我们看看效果如何:

图2

与图1原图相比,经过处理后的图片在视觉上稍微“变暗”了一点。

2. samplewise

datagen = image.ImageDataGenerator(samplewise_center=True,
   samplewise_std_normalization=True)

samplewise_center的官方解释为:“ Set each sample mean to 0.”,使输入数据的每个样本均值为0;samplewise_std_normalization的官方解释为:“Divide each input by its std.”,将输入的每个样本除以其自身的标准差。这个月featurewise的处理不同,featurewise是从整个数据集的分布去考虑的,而samplewise只是针对自身图片,效果如图3:

图3

看来针对自身数据分布的处理在猫狗大战数据集上没有什么意义,或许在mnist这类灰度图上有用?读者可以试试。

3. zca_whtening

datagen = image.ImageDataGenerator(zca_whitening=True)

zca白化的作用是针对图片进行PCA降维操作,减少图片的冗余信息,保留最重要的特征,细节可参看:Whitening transformation--维基百科,Whitening--斯坦福(http://ufldl.stanford.edu/wiki/index.php/Whitening)。

很抱歉的是,本人使用keras的官方演示代码,并没有复现出zca_whitening的效果,当我的图片resize成224×224时,代码报内存错误,应该是在计算SVD的过程中数值太大。后来resize成28×28,就没有内存错误了,但是代码运行了一晚上都不结束,因此使用猫狗大战图片无法复现效果,这里转发另外一个博客使用mnist复现出的结果,如下图4。针对mnist的其它DataAugmentation结果可以看这个博客:Image Augmentation for Deep Learning With Keras,有修改意见的朋友欢迎留言。

图4

4. rotation range

datagen = image.ImageDataGenerator(rotation_range=30)

rotation range的作用是用户指定旋转角度范围,其参数只需指定一个整数即可,但并不是固定以这个角度进行旋转,而是在 [0, 指定角度] 范围内进行随机角度旋转。效果如图5:

图5

5. width_shift_range & height_shift_range

datagen = image.ImageDataGenerator(width_shift_range=0.5,height_shift_range=0.5)

width_shift_range & height_shift_range 分别是水平位置评议和上下位置平移,其参数可以是[0, 1]的浮点数,也可以大于1,其最大平移距离为图片长或宽的尺寸乘以参数,同样平移距离并不固定为最大平移距离,平移距离在 [0, 最大平移距离] 区间内。效果如图6:

图6

平移图片的时候一般会出现超出原图范围的区域,这部分区域会根据fill_mode的参数来补全,具体参数看下文。当参数设置过大时,会出现图7的情况,因此尽量不要设置太大的数值。

图7

6. shear_range

datagen = image.ImageDataGenerator(shear_range=0.5)

shear_range就是错切变换,效果就是让所有点的x坐标(或者y坐标)保持不变,而对应的y坐标(或者x坐标)则按比例发生平移,且平移的大小和该点到x轴(或y轴)的垂直距离成正比。

如图8所示,一个黑色矩形图案变换为蓝色平行四边形图案。狗狗图片变换效果如图9所示。

图8

图9

7. zoom_range

datagen = image.ImageDataGenerator(zoom_range=0.5)

zoom_range参数可以让图片在长或宽的方向进行放大,可以理解为某方向的resize,因此这个参数可以是一个数或者是一个list。当给出一个数时,图片同时在长宽两个方向进行同等程度的放缩操作;当给出一个list时,则代表[width_zoom_range, height_zoom_range],即分别对长宽进行不同程度的放缩。而参数大于0小于1时,执行的是放大操作,当参数大于1时,执行的是缩小操作。

参数大于0小于1时,效果如图10:

图10

参数等于4时,效果如图11:

图11

8. channel_shift_range

datagen = image.ImageDataGenerator(channel_shift_range=10)

channel_shift_range可以理解成改变图片的颜色,通过对颜色通道的数值偏移,改变图片的整体的颜色,这意味着是“整张图”呈现某一种颜色,像是加了一块有色玻璃在图片前面一样,因此它并不能单独改变图片某一元素的颜色,如黑色小狗不能变成白色小狗。当数值为10时,效果如图12;当数值为100时,效果如图13,可见当数值越大时,颜色变深的效果越强。

图12

图13

9. horizontal_flip & vertical_flip

datagen = image.ImageDataGenerator(horizontal_flip=True)

horizontal_flip的作用是随机对图片执行水平翻转操作,意味着不一定对所有图片都会执行水平翻转,每次生成均是随机选取图片进行翻转。效果如图14。

图14

datagen = image.ImageDataGenerator(vertical_flip=True

vertical_flip是作用是对图片执行上下翻转操作,和horizontal_flip一样,每次生成均是随机选取图片进行翻转,效果如图15。

图15

当然了,在猫狗大战数据集当中不适合使用vertical_flip,因为一般没有倒过来的动物。

10. rescale

datagen = image.ImageDataGenerator(rescale= 1/255, width_shift_range=0.1)

rescale的作用是对图片的每个像素值均乘上这个放缩因子,这个操作在所有其它变换操作之前执行,在一些模型当中,直接输入原图的像素值可能会落入激活函数的“死亡区”,因此设置放缩因子为1/255,把像素值放缩到0和1之间有利于模型的收敛,避免神经元“死亡”。

图片经过rescale之后,保存到本地的图片用肉眼看是没有任何区别的,如果我们在内存中直接打印图片的数值,可以看到以下结果:

图16

可以从图16看到,图片像素值都被缩小到0和1之间,但如果打开保存在本地的图片,其数值依然不变,如图17。

图17

应该是在保存到本地的时候,keras把图像像素值恢复为原来的尺度了,在内存中查看则不会。

11. fill_mode

datagen = image.ImageDataGenerator(fill_mode='wrap', zoom_range=[4, 4])

fill_mode为填充模式,如前面提到,当对图片进行平移、放缩、错切等操作时,图片中会出现一些缺失的地方,那这些缺失的地方该用什么方式补全呢?就由fill_mode中的参数确定,包括:“constant”、“nearest”(默认)、“reflect”和“wrap”。这四种填充方式的效果对比如图18所示,从左到右,从上到下分别为:“reflect”、“wrap”、“nearest”、“constant”。

图18

当设置为“constant”时,还有一个可选参数,cval,代表使用某个固定数值的颜色来进行填充。图19为cval=100时的效果,可以与图18右下角的无cval参数的图对比。

图19

自己动手来测试?

这里给出一段小小的代码,作为进行这些参数调试时的代码,你也可以使用jupyter notebook来试验这些参数,把图片结果打印到你的网页上。

%matplotlib inline
import matplotlib.pyplot as plt
from PIL import Image
from keras.preprocessing import image
import glob

# 设置生成器参数
datagen = image.ImageDataGenerator(fill_mode='wrap', zoom_range=[4, 4])

gen_data = datagen.flow_from_directory(PATH, 
                                      batch_size=1, 
                                      shuffle=False, 
                                      save_to_dir=SAVE_PATH,
                                      save_prefix='gen', 
      target_size=(224, 224))

# 生成9张图
for i in range(9):
   gen_data.next() 

# 找到本地生成图,把9张图打印到同一张figure上
name_list = glob.glob(gen_path+'16/*')
fig = plt.figure()
for i in range(9):
   img = Image.open(name_list[i])
   sub_img = fig.add_subplot(331 + i)
   sub_img.imshow(img)
plt.show()

结语

面对小数据集时,使用DataAugmentation扩充你的数据集就变得非常重要,但在使用DataAugmentation之前,先要了解你的数据集需不需要这类图片,如猫狗大战数据集不需要上下翻转的图片,以及思考一下变换的程度是不是合理的,例如把目标水平偏移到图像外面就是不合理的。多试几次效果,再最终确定使用哪些参数。上面所有内容已经公布在我的github(https://github.com/JustinhoCHN/keras-image-data-augmentation)上面,附上了实验时的jupyter notebook文件,大家可以玩一玩,have fun!

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-11-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏技术翻译

回归问题的深层神经网络

众所周知,神经网络可用于解决分类问题,例如,它们被用于手写体数字分类,但问题是,如果我们将它们用于回归问题,它会有效果吗?

9712

用Python的长短期记忆神经网络进行时间序列预测

长短期记忆递归神经网络具有学习长的观察序列的潜力。

2.9K8
来自专栏AI研习社

图片数据集太少?Keras Image Data Augmentation 各参数详解

图像深度学习任务中,面对小数据集,我们往往需要利用Image Data Augmentation图像增广技术来扩充我们的数据集,而keras的内置ImageDa...

7184
来自专栏人工智能LeadAI

简易的深度学习框架Keras代码解析与应用

总体来讲keras这个深度学习框架真的很“简易”,它体现在可参考的文档写的比较详细,不像caffe,装完以后都得靠技术博客,keras有它自己的官方文档(不过是...

6917
来自专栏深度学习思考者

目标检测:选择性搜索策略(C++ / Python)

导读:通过本教程,我们将彻底理解一个重要的概念:目标检测中的常用方法“Selective Search”。文末也会给出使用C++或者Python的Opencv代...

6487
来自专栏AI研习社

浏览器中的姿态检测:PoseNet 模型(附代码)

这里附上 Youtube 上这段视频的源代码,作者是 Siraj Raval:https://youtu.be/9KqNk5keyCc

3353
来自专栏人工智能

使用Keras在训练深度学习模型时监控性能指标

Keras库提供了一套供深度学习模型训练时的用于监控和汇总的标准性能指标并且开放了接口给开发者使用。

2.1K10
来自专栏专知

显存不足?PyTorch 显存使用分析与优化

面对动辄几百万几千万参数量的模型, GPU那连常规 U盘都比不过的显存, 真的是杯水车薪。相信大家在日常模型训练过程中,或多或少的总会遇见:

1.4K2
来自专栏大数据挖掘DT机器学习

如何用TensorFlow和TF-Slim实现图像标注、分类与分割

本文github源码地址: 在公众号 datadw 里 回复 图像 即可获取。 笔者将和大家分享一个结合了TensorFlow和slim库的小应用,来实现...

6124
来自专栏利炳根的专栏

学习笔记CB010:递归神经网络、LSTM、自动抓取字幕

递归神经网络(RNN),时间递归神经网络(recurrent neural network),结构递归神经网络(recursive neural network...

5894

扫码关注云+社区

领取腾讯云代金券