深度学习CTPN+CRNN模型实现图片内文字的定位与识别(OCR)

源码(PyTorch实现)github 地址:

在公众号 datadw 里 回复 OCR 即可获取。

1:样本获取

**算法论文:**
      Synthetic Data for Text Localisation in Natural Images
      Github: https://github.com/ankush-me/SynthText
**词库:**
     https://pan.baidu.com/s/10anmu  + 英文词汇 经过处理后得到大约500兆
     6000万词组
**字体:**
    ubntu系统下支持中文的字体,选了大概10种字体左右
**背景图片库:**
   http://zeus.robots.ox.ac.uk/textspot/static/db/bg_img.tar.gz
   大约有一万张分割好的图片
**算法大致过程:**
   随机从背景图片库中选出一张图片,随机从词库中选出一些词组,与背景图片分割

的块进行匹配,选好字体,颜色,大小,变换等信息,将词组写入背景块中,

扣取背景块矩形框作为一个个样本。
**样本类似**

2:网络设计:

网络: 1:input: 输入文字块,归一化到32*w 即height缩放到32,宽度按高度的比率缩 放,当然,也可以缩放到自己想要的宽度,如128(测试时统一缩放到[32,128],训练时为批次训练,缩放到[32,Wmax]) 下面以32*128(w,h)分析 2:conv3层时数据大小为256*8*32,两个pooling层宽高各除以4 3:pooling2层时 步长为(2,1) dilation (1,1) 所以此时输出为256*4*33 4:bn层不改变输出的大小(就是做个归一化,加速训练收敛,个人理解),同样p3层时,w+1,所以pooling3层时,输出为512*2*34 5:conv7层时,kernel 为2*2,stride(1,1) padding(0,0) Wnew = (2 + 2 * padW - kernel ) / strideW + 1 = 1 Hnew = 33 所以conv7层输出为512*1*33 6: 后面跟两个双向Lstm,隐藏节点都是256 Blstm1输出33*1*256 Blstm2输出33*1*5530 5530 = 字符个数 + 非字符 = 5529 + 1 最终的输出结果直观上可以想象成将128分为33份,每一份对应5530个类别的概率

3:实验结果

自动生成差不多150万个样本,测试集1500张左右,测试集全对率62%左右。因为硬件限制,所以样本较少,感觉样本数量应该要几千万甚至上亿,模型才会比较稳定。150万个样本训练也没收敛,还有2.5左右的cost.

4:CTPN+CRNN整合场景文字检测识别结果

没有进行版面分析,所以识别结果没有按顺序输出 其中标点符号训练集较少,错得较多。整体识别率感觉还行,如果加大训练样本至几千万,上亿,模型应该会比较稳定,识别也会比较好

http://blog.csdn.net/u013293750/article/details/73188934

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2017-11-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏深度学习自然语言处理

这些神经网络调参细节,你都了解了吗

今天在写本科毕业论文的时候又回顾了一下神经网络调参的一些细节问题,特来总结下。主要从weight_decay,clip_norm,lr_decay说起。

1542
来自专栏小鹏的专栏

用 TensorFlow 创建自己的 Speech Recognizer

参考资料 源码请点:https://github.com/llSourcell/tensorf... 语音识别无处不在,siri,google,讯飞输入法...

2986
来自专栏CVer

[计算机视觉论文速递] ECCV 2018 专场2

Amusi 将日常整理的论文都会同步发布到 daily-paper-computer-vision 上。名字有点露骨,还请见谅。喜欢的童鞋,欢迎star、for...

1060
来自专栏专知

【专知-Java Deeplearning4j深度学习教程05】无监督特征提取神器—AutoEncoder:图文+代码

【导读】主题链路知识是我们专知的核心功能之一,为用户提供AI领域系统性的知识学习服务,一站式学习人工智能的知识,包含人工智能( 机器学习、自然语言处理、计算机视...

50011
来自专栏专知

【前沿】Geoffery Hinton 的 NIPS2017 Capsule论文简读

10月26日,深度学习元老Hinton的NIPS2017 Capsule论文《Dynamic Routing Between Capsules》终于在arxiv...

2533
来自专栏CreateAMind

论文:生成模型采样-类比学习应用 代码

之前发的这篇文章(之前内容在文章底部)介绍了生成模型的高效采样及隐变量空间特征特点,最近的How to Train a GAN? Tips and tricks...

1052
来自专栏计算机视觉战队

CVPR—II | 经典网络再现,全内容跟踪

今天首先给大家带来“YOLO”!也被上一篇“Faith”读者说对了,在此也感谢大家的关注与阅读,O(∩_∩)O谢谢 YOLO ? 看到这个封面,相信很多很多...

3625
来自专栏大学生计算机视觉学习DeepLearning

深度学习(七)U-Net原理以及keras代码实现医学图像眼球血管分割

原文链接:https://www.cnblogs.com/DOMLX/p/9780786.html

1.5K4
来自专栏YoungGy

ISLR_t统计量

回顾 t分布的起源 t分布概述 inference for a mean inference for comparing two independent mea...

2585
来自专栏杨熹的专栏

用 TensorFlow 创建自己的 Speech Recognizer

参考资料 源码请点:https://github.com/llSourcell/tensorf... ---- 语音识别无处不在,siri,google,讯飞...

3195

扫码关注云+社区

领取腾讯云代金券