SDP(6):分布式数据库运算环境- Cassandra-Engine

    现代信息系统应该是避不开大数据处理的。作为一个通用的系统集成工具也必须具备大数据存储和读取能力。cassandra是一种分布式的数据库,具备了分布式数据库高可用性(high-availability)特性,对于一个实时大型分布式集成系统来说是核心支柱。与传统的关系数据库对比,cassandra从数据存储结构、读取方式等可以说是皆然不同的。如:cassandra库表设计是反范式的(denormalized)、表结构设计是反过来根据query要求设计的,等等。幸运的是自版本3.0后cassandra提供了CQL来支持数据库操作。简单来说CQL就是cassandra的SQL。CQL是一种query语言,在语法上与SQL相近。最重要的是CQL用SQL的呈现方式来描述cassandra底层数据的存储方式,让熟悉了关系数据库SQL编程人员能够容易开始使用cassandra。与SQL一样,CQL也是一种纯文本语言,可以通过多种终端接口软件包括java-client来运行CQL脚本。 目前在市面上有一些现成的cassandra客户端编程软件,有些为了实现类型安全(type-safety)还提供了Linq-DSL(language-integrated-query),但因为我们需要面向各种cassandra数据库用户,所以还是决定提供一种CQL脚本运算环境,也就是说Cassandra-Engine接受CQL脚本然后运算得出结果。

和JDBC的运算结构很相似:CQL运算也是先构建statement然后execute。与JDBC不同的是:CQL还提供non-blocking脚本运算: 

   /**
     * Executes the provided query asynchronously.
     * <p/>
     * This method does not block. It returns as soon as the query has been
     * passed to the underlying network stack. In particular, returning from
     * this method does not guarantee that the query is valid or has even been
     * submitted to a live node. Any exception pertaining to the failure of the
     * query will be thrown when accessing the {@link ResultSetFuture}.
     * <p/>
     * Note that for queries that don't return a result (INSERT, UPDATE and
     * DELETE), you will need to access the ResultSetFuture (that is, call one of
     * its {@code get} methods to make sure the query was successful.
     *
     * @param statement the CQL query to execute (that can be any {@code Statement}).
     * @return a future on the result of the query.
     * @throws UnsupportedFeatureException if the protocol version 1 is in use and
     *                                     a feature not supported has been used. Features that are not supported by
     *                                     the version protocol 1 include: BatchStatement, ResultSet paging and binary
     *                                     values in RegularStatement.
     */
    ResultSetFuture executeAsync(Statement statement);

executeAsync返回结果ResultSsetFuture是个google-guava-future。我们可以用隐式转换(implicit conversion)把它转换成scala-future来使用: 

 implicit def listenableFutureToFuture[T](
               listenableFuture: ListenableFuture[T]): Future[T] = {
    val promise = Promise[T]()
    Futures.addCallback(listenableFuture, new FutureCallback[T] {
      def onFailure(error: Throwable): Unit = {
        promise.failure(error)
        ()
      }
      def onSuccess(result: T): Unit = {
        promise.success(result)
        ()
      }
    })
    promise.future
  }

有了这个隐式实例executeAsync返回结果自动转成Future[?],如下:

  def cqlSingleUpdate(ctx: CQLContext)(
    implicit session: Session, ec: ExecutionContext): Future[Boolean] = {
...
      session.executeAsync(boundStmt).map(_.wasApplied())
  }

我们还是通过某种Context方式来构建完整可执行的statement:

case class CQLContext(
                       statements: Seq[String],
                       parameters: Seq[Seq[Object]] = Nil,
                       consistency: Option[CQLContext.CONSISTENCY_LEVEL] = None
                     ) { ctx =>
  def setConsistencyLevel(_consistency: CQLContext.CONSISTENCY_LEVEL): CQLContext =
    ctx.copy(consistency = Some(_consistency))
  def setCommand(_statement: String, _parameters: Object*): CQLContext =
    ctx.copy(statements = Seq(_statement), parameters = Seq(_parameters))
  def appendCommand(_statement: String, _parameters: Object*): CQLContext =
    ctx.copy(statements = ctx.statements :+ _statement,
      parameters = ctx.parameters ++ Seq(_parameters))
}

与JDBCContext不同的是这个consistencyLevel。因为数据是重复分布在多个集群节点上的,所以需要通过consistencyLevel来注明分布式数据的读写方式:

  def consistencyLevel: CONSISTENCY_LEVEL => ConsistencyLevel = consistency => {
    consistency match {
      case ALL => ConsistencyLevel.ALL
      case ONE => ConsistencyLevel.ONE
      case TWO => ConsistencyLevel.TWO
      case THREE => ConsistencyLevel.THREE
      case ANY => ConsistencyLevel.ANY
      case EACH_QUORUM => ConsistencyLevel.EACH_QUORUM
      case LOCAL_ONE => ConsistencyLevel.LOCAL_ONE
      case QUORUM => ConsistencyLevel.QUORUM
      case SERIAL => ConsistencyLevel.SERIAL
      case LOCAL_SERIAL => ConsistencyLevel.LOCAL_SERIAL
    }
  }

CQL statement 分simplestatement, preparedstatement和boundstatement。boundstatement可以覆盖所有类型的CQL statement构建要求。下面是一个构建boundstatement的例子:

   val prepStmt = session.prepare(ctx.statement)

    var boundStmt =  prepStmt.bind()
    if (ctx.parameter != Nil) {
      val params = processParameters(ctx.parameter)
      boundStmt = prepStmt.bind(params:_*)
    }

CQL statement参数类型比较复杂,包括date,timestamp等都必须经过processParameters函数进行预处理:

  case class CQLDate(year: Int, month: Int, day: Int)
  case object CQLTodayDate
  case class CQLDateTime(year: Int, Month: Int,
                         day: Int, hour: Int, minute: Int, second: Int, millisec: Int = 0)
  case object CQLDateTimeNow

  def processParameters(params: Seq[Object]): Seq[Object] = {
    params.map { obj =>
      obj match {
        case CQLDate(yy, mm, dd) => LocalDate.fromYearMonthDay(yy, mm, dd)
        case CQLTodayDate =>
          val today = java.time.LocalDate.now()
          LocalDate.fromYearMonthDay(today.getYear, today.getMonth.getValue, today.getDayOfMonth)
        case CQLDateTimeNow => Instant.now()
        case CQLDateTime(yy, mm, dd, hr, ms, sc, mi) =>
          Instant.parse(f"$yy%4d-$mm%2d-$dd%2dT$hr%2d:$ms%2d:$sc%2d$mi%3d")
        case p@_ => p
      }
    }
  }

CassandraEngine更新运算分为单条update和批次update。批次update与事物处理有异曲同工之效:批次中任何一条脚本运算失败则回滚所有更新:

 def cqlExecute(ctx: CQLContext)(
    implicit session: Session, ec: ExecutionContext): Future[Boolean] = {
    if (ctx.statements.size == 1)
      cqlSingleUpdate(ctx)
    else
      cqlMultiUpdate(ctx)
  }
  def cqlSingleUpdate(ctx: CQLContext)(
    implicit session: Session, ec: ExecutionContext): Future[Boolean] = {

      val prepStmt = session.prepare(ctx.statements.head)

      var boundStmt =  prepStmt.bind()
      if (ctx.statements != Nil) {
        val params = processParameters(ctx.parameters.head)
        boundStmt = prepStmt.bind(params:_*)
      }

    ctx.consistency.foreach {consistency =>
      boundStmt.setConsistencyLevel(consistencyLevel(consistency))}
      session.executeAsync(boundStmt).map(_.wasApplied())
  }

  def cqlMultiUpdate(ctx: CQLContext)(
    implicit session: Session, ec: ExecutionContext): Future[Boolean] = {
    val commands: Seq[(String,Seq[Object])] = ctx.statements zip ctx.parameters
    var batch = new BatchStatement()
    commands.foreach { case (stm, params) =>
      val prepStmt = session.prepare(stm)
      if (params == Nil)
        batch.add(prepStmt.bind())
      else {
        val p = processParameters(params)
        batch.add(prepStmt.bind(p: _*))
      }
    }

    ctx.consistency.foreach {consistency =>
      batch.setConsistencyLevel(consistencyLevel(consistency))}
    session.executeAsync(batch).map(_.wasApplied())
  }

CassandraEngine update返回运算状态Future[Boolean]。下面是一段update示范:

  val createCQL ="""
  CREATE TABLE testdb.members (
    id UUID primary key,
    name TEXT,
    description TEXT,
    birthday DATE,
    created_at TIMESTAMP,
    picture BLOB
  )"""

  val ctxCreate = CQLContext().setCommand(createCQL)

  val ctxInsert = CQLContext().setCommand("insert into testdb.members(id,name,description,birthday,created_at,picture)" +
    " values(uuid(),?,?,?,?,?)", "alan xu", "alan-xu", CQLDate(1966, 11, 27), CQLDateTimeNow, cqlFileToBytes("/users/tiger/Nobody.png"))
  
  val createData = for {
    createTable <- cqlExecute(ctxCreate)
    insertData <- cqlExecute(ctxInsert)
  } yield(createTable, insertData)

  createData.onComplete {
    case Success((c,i)) => println(s"Create Table: $c, Insert Data $i")
    case Failure(e) => println(e.getMessage)
  }

在上面的例子里我们用for-comprehension实现了连续运算。注意在这个例子里已经包括了date,datetime,blob等输入参数类型。

fetch-query的statement构建信息如下:

case class CQLQueryContext[M](
                       statement: String,
                       parameter: Seq[Object] = Nil,
                       consistency: Option[CQLContext.CONSISTENCY_LEVEL] = None,
                       extractor: Row => M
                     )

fetch-query运算也是用execute方式实现的:

    /**
     * Executes the provided query.
     * <p/>
     * This method blocks until at least some result has been received from the
     * database. However, for SELECT queries, it does not guarantee that the
     * result has been received in full. But it does guarantee that some
     * response has been received from the database, and in particular
     * guarantees that if the request is invalid, an exception will be thrown
     * by this method.
     *
     * @param statement the CQL query to execute (that can be any {@link Statement}).
     * @return the result of the query. That result will never be null but can
     * be empty (and will be for any non SELECT query).
     * @throws NoHostAvailableException    if no host in the cluster can be
     *                                     contacted successfully to execute this query.
     * @throws QueryExecutionException     if the query triggered an execution
     *                                     exception, i.e. an exception thrown by Cassandra when it cannot execute
     *                                     the query with the requested consistency level successfully.
     * @throws QueryValidationException    if the query if invalid (syntax error,
     *                                     unauthorized or any other validation problem).
     * @throws UnsupportedFeatureException if the protocol version 1 is in use and
     *                                     a feature not supported has been used. Features that are not supported by
     *                                     the version protocol 1 include: BatchStatement, ResultSet paging and binary
     *                                     values in RegularStatement.
     */
    ResultSet execute(Statement statement);

返回结果ResultSet经过转换后成为scala collection:

  def fetchResultPage[C[_] <: TraversableOnce[_],A](ctx: CQLQueryContext[A], pageSize: Int = 100)(
    implicit session: Session, cbf: CanBuildFrom[Nothing, A, C[A]]): (ResultSet, C[A])= {

    val prepStmt = session.prepare(ctx.statement)

    var boundStmt =  prepStmt.bind()
    if (ctx.parameter != Nil) {
      val params = processParameters(ctx.parameter)
      boundStmt = prepStmt.bind(params:_*)
    }

    ctx.consistency.foreach {consistency =>
      boundStmt.setConsistencyLevel(consistencyLevel(consistency))}

    val resultSet = session.execute(boundStmt.setFetchSize(pageSize))
    (resultSet,(resultSet.asScala.view.map(ctx.extractor)).to[C])

  }

fetchResultPage是分页读取的,可以用fetchMoreResults持续读取:

    /**
     * Force fetching the next page of results for this result set, if any.
     * <p/>
     * This method is entirely optional. It will be called automatically while
     * the result set is consumed (through {@link #one}, {@link #all} or iteration)
     * when needed (i.e. when {@code getAvailableWithoutFetching() == 0} and
     * {@code isFullyFetched() == false}).
     * <p/>
     * You can however call this method manually to force the fetching of the
     * next page of results. This can allow to prefetch results before they are
     * strictly needed. For instance, if you want to prefetch the next page of
     * results as soon as there is less than 100 rows readily available in this
     * result set, you can do:
     * <pre>
     *   ResultSet rs = session.execute(...);
     *   Iterator<Row> iter = rs.iterator();
     *   while (iter.hasNext()) {
     *       if (rs.getAvailableWithoutFetching() == 100 && !rs.isFullyFetched())
     *           rs.fetchMoreResults();
     *       Row row = iter.next()
     *       ... process the row ...
     *   }
     * </pre>
     * This method is not blocking, so in the example above, the call to {@code
     * fetchMoreResults} will not block the processing of the 100 currently available
     * rows (but {@code iter.hasNext()} will block once those rows have been processed
     * until the fetch query returns, if it hasn't yet).
     * <p/>
     * Only one page of results (for a given result set) can be
     * fetched at any given time. If this method is called twice and the query
     * triggered by the first call has not returned yet when the second one is
     * performed, then the 2nd call will simply return a future on the currently
     * in progress query.
     *
     * @return a future on the completion of fetching the next page of results.
     * If the result set is already fully retrieved ({@code isFullyFetched() == true}),
     * then the returned future will return immediately but not particular error will be
     * thrown (you should thus call {@link #isFullyFetched()} to know if calling this
     * method can be of any use}).
     */
    ListenableFuture<S> fetchMoreResults();

下面是分页持续读取的实现:

  def fetchMorePages[C[_] <: TraversableOnce[_],A](resultSet: ResultSet, timeOut: Duration)(
       extractor: Row => A)(implicit cbf: CanBuildFrom[Nothing, A, C[A]]): (ResultSet,Option[C[A]]) =
    if (resultSet.isFullyFetched) {
      (resultSet, None)
    } else {
      try {
        val result = Await.result(resultSet.fetchMoreResults(), timeOut)
        (result, Some((result.asScala.view.map(extractor)).to[C]))
      } catch { case e: Throwable => (resultSet, None) }
    }

我们用这两个函数来读取上面用cqlInsert脚本加入cassandra的数据:

  //data model
  case class Member(
                     id: String,
                     name: String,
                     description: Option[String] = None,
                     birthday: LocalDate,
                     createdAt: java.util.Date,
                     picture: Option[ByteBuffer] = None)

  //data row converter
  val toMember = (rs: Row) => Member(
    id = rs.getUUID("id").toString,
    name = rs.getString("name"),
    description = {
      val d = rs.getString("description")
      if (d == null)
        None
      else
        Some(d)

      Some(rs.getColumnDefinitions.toString)
    },
    birthday = rs.getDate("birthday"),
    createdAt = rs.getTimestamp("created_at"),
    picture = {
      val pic = rs.getBytes("picture")
      if (pic == null)
        None
      else
        Some(pic)

    }
  )

 try {
   val qtx = CQLQueryContext(statement = "select * from testdb.members", extractor = toMember)
   val (resultSet, vecResults) = fetchResultPage[Vector, Member](qtx)

   var vecMembers: Vector[Member] = vecResults

   var isExh = resultSet.isExhausted
   var nextPage: (ResultSet, Option[Vector[Member]]) = (resultSet, Some(vecResults))
   while (!isExh) {
     nextPage = fetchMorePages[Vector,Member](nextPage._1,1 second)(toMember)
     nextPage._2.foreach {vec =>
       vecMembers = vecMembers ++ vec
     }
     isExh = resultSet.isExhausted
   }
   vecMembers.foreach { m =>
     println(s"id: ${m.id}-name:${m.name}-${m.description} birthday: ${m.birthday.toString}")
     println(s"created_at: ${cqlDateTimeString(m.createdAt,"yyyy-MM-dd HH:mm:ss.SSS")}")
     m.picture match {
       case Some(buf) =>
         val fname = s"/users/tiger/pic-${m.name}.png"
         cqlBytesToFile(buf,fname)
         println(s"saving picture to $fname")
       case _ => println("empty picture!")
     }
   }
 } catch {
   case e: Exception => println(e.getMessage)
 }

在上面的示范里我们还引用了一些helper函数:

 def cqlFileToBytes(fileName: String): ByteBuffer = {
    val fis = new FileInputStream(fileName)
    val b = new Array[Byte](fis.available + 1)
    val length = b.length
    fis.read(b)
    ByteBuffer.wrap(b)
  }


  def cqlBytesToFile(bytes: ByteBuffer, fileName: String)(
        implicit mat: Materializer): Future[IOResult] = {
    val source = StreamConverters.fromInputStream(() => ByteBufferInputStream(bytes))
    source.runWith(FileIO.toPath(Paths.get(fileName)))
  }

  def cqlDateTimeString(date: java.util.Date, fmt: String): String = {
    val outputFormat = new java.text.SimpleDateFormat(fmt)
    outputFormat.format(date)
  }

  def useJava8DateTime(cluster: Cluster) = {
    //for jdk8 datetime format
    cluster.getConfiguration().getCodecRegistry()
      .register(InstantCodec.instance)
  }

还需要一个ByteBufferInputStream类型来实现blob内容的读取:

 class ByteBufferInputStream(buf: ByteBuffer) extends InputStream {
    override def read: Int = {
      if (!buf.hasRemaining) return -1
      buf.get
    }

    override def read(bytes: Array[Byte], off: Int, len: Int): Int = {
      val length: Int = Math.min(len, buf.remaining)
      buf.get(bytes, off, length)
      length
    }
  }
  object ByteBufferInputStream {
    def apply(buf: ByteBuffer): ByteBufferInputStream = {
      new ByteBufferInputStream(buf)
    }
  }

下面就是本次讨论示范源代码:

build.sbt

name := "learn_cassandra"

version := "0.1"

scalaVersion := "2.12.4"

libraryDependencies := Seq(
  "com.datastax.cassandra" % "cassandra-driver-core" % "3.4.0",
  "com.datastax.cassandra" % "cassandra-driver-extras" % "3.4.0",
  "com.typesafe.akka" %% "akka-actor" % "2.5.4",
  "com.typesafe.akka" %% "akka-stream" % "2.5.4",
  "com.lightbend.akka" %% "akka-stream-alpakka-cassandra" % "0.16",
  "org.scalikejdbc" %% "scalikejdbc"       % "3.2.1",
  "org.scalikejdbc" %% "scalikejdbc-test"   % "3.2.1"   % "test",
  "org.scalikejdbc" %% "scalikejdbc-config"  % "3.2.1",
  "org.scalikejdbc" %% "scalikejdbc-streams" % "3.2.1",
  "org.scalikejdbc" %% "scalikejdbc-joda-time" % "3.2.1",
  "com.h2database"  %  "h2"                % "1.4.196",
  "mysql" % "mysql-connector-java" % "6.0.6",
  "org.postgresql" % "postgresql" % "42.2.0",
  "commons-dbcp" % "commons-dbcp" % "1.4",
  "org.apache.tomcat" % "tomcat-jdbc" % "9.0.2",
  "com.zaxxer" % "HikariCP" % "2.7.4",
  "com.jolbox" % "bonecp" % "0.8.0.RELEASE",
  "com.typesafe.slick" %% "slick" % "3.2.1",
  "ch.qos.logback"  %  "logback-classic"   % "1.2.3")

CassandraEngine.scala

import com.datastax.driver.core._
import scala.concurrent._
import com.google.common.util.concurrent.{FutureCallback, Futures, ListenableFuture}
import scala.collection.JavaConverters._
import scala.collection.generic.CanBuildFrom
import scala.concurrent.duration.Duration

object CQLContext {
  // Consistency Levels
  type CONSISTENCY_LEVEL = Int
  val ANY: CONSISTENCY_LEVEL          =                                        0x0000
  val ONE: CONSISTENCY_LEVEL          =                                        0x0001
  val TWO: CONSISTENCY_LEVEL          =                                        0x0002
  val THREE: CONSISTENCY_LEVEL        =                                        0x0003
  val QUORUM : CONSISTENCY_LEVEL      =                                        0x0004
  val ALL: CONSISTENCY_LEVEL          =                                        0x0005
  val LOCAL_QUORUM: CONSISTENCY_LEVEL =                                        0x0006
  val EACH_QUORUM: CONSISTENCY_LEVEL  =                                        0x0007
  val LOCAL_ONE: CONSISTENCY_LEVEL    =                                      0x000A
  val LOCAL_SERIAL: CONSISTENCY_LEVEL =                                     0x000B
  val SERIAL: CONSISTENCY_LEVEL       =                                      0x000C

  def apply(): CQLContext = CQLContext(statements = Nil)

  def consistencyLevel: CONSISTENCY_LEVEL => ConsistencyLevel = consistency => {
    consistency match {
      case ALL => ConsistencyLevel.ALL
      case ONE => ConsistencyLevel.ONE
      case TWO => ConsistencyLevel.TWO
      case THREE => ConsistencyLevel.THREE
      case ANY => ConsistencyLevel.ANY
      case EACH_QUORUM => ConsistencyLevel.EACH_QUORUM
      case LOCAL_ONE => ConsistencyLevel.LOCAL_ONE
      case QUORUM => ConsistencyLevel.QUORUM
      case SERIAL => ConsistencyLevel.SERIAL
      case LOCAL_SERIAL => ConsistencyLevel.LOCAL_SERIAL

    }
  }

}
case class CQLQueryContext[M](
                       statement: String,
                       parameter: Seq[Object] = Nil,
                       consistency: Option[CQLContext.CONSISTENCY_LEVEL] = None,
                       extractor: Row => M
                     )

case class CQLContext(
                       statements: Seq[String],
                       parameters: Seq[Seq[Object]] = Nil,
                       consistency: Option[CQLContext.CONSISTENCY_LEVEL] = None
                     ) { ctx =>

  def setConsistencyLevel(_consistency: CQLContext.CONSISTENCY_LEVEL): CQLContext =
    ctx.copy(consistency = Some(_consistency))
  def setCommand(_statement: String, _parameters: Object*): CQLContext =
    ctx.copy(statements = Seq(_statement), parameters = Seq(_parameters))
  def appendCommand(_statement: String, _parameters: Object*): CQLContext =
    ctx.copy(statements = ctx.statements :+ _statement,
      parameters = ctx.parameters ++ Seq(_parameters))
}

object CQLEngine {
  import CQLContext._
  import CQLHelpers._

  def fetchResultPage[C[_] <: TraversableOnce[_],A](ctx: CQLQueryContext[A], pageSize: Int = 100)(
    implicit session: Session, cbf: CanBuildFrom[Nothing, A, C[A]]): (ResultSet, C[A])= {

    val prepStmt = session.prepare(ctx.statement)

    var boundStmt =  prepStmt.bind()
    if (ctx.parameter != Nil) {
      val params = processParameters(ctx.parameter)
      boundStmt = prepStmt.bind(params:_*)
    }

    ctx.consistency.foreach {consistency =>
      boundStmt.setConsistencyLevel(consistencyLevel(consistency))}

    val resultSet = session.execute(boundStmt.setFetchSize(pageSize))
    (resultSet,(resultSet.asScala.view.map(ctx.extractor)).to[C])
  }
  def fetchMorePages[C[_] <: TraversableOnce[_],A](resultSet: ResultSet, timeOut: Duration)(
       extractor: Row => A)(implicit cbf: CanBuildFrom[Nothing, A, C[A]]): (ResultSet,Option[C[A]]) =
    if (resultSet.isFullyFetched) {
      (resultSet, None)
    } else {
      try {
        val result = Await.result(resultSet.fetchMoreResults(), timeOut)
        (result, Some((result.asScala.view.map(extractor)).to[C]))
      } catch { case e: Throwable => (resultSet, None) }
    }
  def cqlExecute(ctx: CQLContext)(
    implicit session: Session, ec: ExecutionContext): Future[Boolean] = {
    if (ctx.statements.size == 1)
      cqlSingleUpdate(ctx)
    else
      cqlMultiUpdate(ctx)
  }
  def cqlSingleUpdate(ctx: CQLContext)(
    implicit session: Session, ec: ExecutionContext): Future[Boolean] = {

      val prepStmt = session.prepare(ctx.statements.head)

      var boundStmt =  prepStmt.bind()
      if (ctx.statements != Nil) {
        val params = processParameters(ctx.parameters.head)
        boundStmt = prepStmt.bind(params:_*)
      }

    ctx.consistency.foreach {consistency =>
      boundStmt.setConsistencyLevel(consistencyLevel(consistency))}
      session.executeAsync(boundStmt).map(_.wasApplied())
  }
  def cqlMultiUpdate(ctx: CQLContext)(
    implicit session: Session, ec: ExecutionContext): Future[Boolean] = {
    val commands: Seq[(String,Seq[Object])] = ctx.statements zip ctx.parameters
    var batch = new BatchStatement()
    commands.foreach { case (stm, params) =>
      val prepStmt = session.prepare(stm)
      if (params == Nil)
        batch.add(prepStmt.bind())
      else {
        val p = processParameters(params)
        batch.add(prepStmt.bind(p: _*))
      }
    }
    ctx.consistency.foreach {consistency =>
      batch.setConsistencyLevel(consistencyLevel(consistency))}
    session.executeAsync(batch).map(_.wasApplied())
  }
}
object CQLHelpers {
  import java.nio.ByteBuffer
  import java.io._
  import java.nio.file._
  import com.datastax.driver.core.LocalDate
  import com.datastax.driver.extras.codecs.jdk8.InstantCodec
  import java.time.Instant
  import akka.stream.scaladsl._
  import akka.stream._

  implicit def listenableFutureToFuture[T](
               listenableFuture: ListenableFuture[T]): Future[T] = {
    val promise = Promise[T]()
    Futures.addCallback(listenableFuture, new FutureCallback[T] {
      def onFailure(error: Throwable): Unit = {
        promise.failure(error)
        ()
      }
      def onSuccess(result: T): Unit = {
        promise.success(result)
        ()
      }
    })
    promise.future
  }

  case class CQLDate(year: Int, month: Int, day: Int)
  case object CQLTodayDate
  case class CQLDateTime(year: Int, Month: Int,
                         day: Int, hour: Int, minute: Int, second: Int, millisec: Int = 0)
  case object CQLDateTimeNow

  def processParameters(params: Seq[Object]): Seq[Object] = {
    params.map { obj =>
      obj match {
        case CQLDate(yy, mm, dd) => LocalDate.fromYearMonthDay(yy, mm, dd)
        case CQLTodayDate =>
          val today = java.time.LocalDate.now()
          LocalDate.fromYearMonthDay(today.getYear, today.getMonth.getValue, today.getDayOfMonth)
        case CQLDateTimeNow => Instant.now()
        case CQLDateTime(yy, mm, dd, hr, ms, sc, mi) =>
          Instant.parse(f"$yy%4d-$mm%2d-$dd%2dT$hr%2d:$ms%2d:$sc%2d$mi%3d")
        case p@_ => p
      }
    }
  }
  class ByteBufferInputStream(buf: ByteBuffer) extends InputStream {
    override def read: Int = {
      if (!buf.hasRemaining) return -1
      buf.get
    }

    override def read(bytes: Array[Byte], off: Int, len: Int): Int = {
      val length: Int = Math.min(len, buf.remaining)
      buf.get(bytes, off, length)
      length
    }
  }
  object ByteBufferInputStream {
    def apply(buf: ByteBuffer): ByteBufferInputStream = {
      new ByteBufferInputStream(buf)
    }
  }
  class FixsizedByteBufferOutputStream(buf: ByteBuffer) extends OutputStream {

    override def write(b: Int): Unit = {
      buf.put(b.toByte)
    }

    override def write(bytes: Array[Byte], off: Int, len: Int): Unit = {
      buf.put(bytes, off, len)
    }
  }
  object FixsizedByteBufferOutputStream {
    def apply(buf: ByteBuffer) = new FixsizedByteBufferOutputStream(buf)
  }
  class ExpandingByteBufferOutputStream(var buf: ByteBuffer, onHeap: Boolean) extends OutputStream {

    private val increasing = ExpandingByteBufferOutputStream.DEFAULT_INCREASING_FACTOR

    override def write(b: Array[Byte], off: Int, len: Int): Unit = {
      val position = buf.position
      val limit = buf.limit
      val newTotal: Long = position + len
      if(newTotal > limit){
        var capacity = (buf.capacity * increasing)
        while(capacity <= newTotal){
          capacity = (capacity*increasing)
        }
        increase(capacity.toInt)
      }

      buf.put(b, 0, len)
    }

    override def write(b: Int): Unit= {
      if (!buf.hasRemaining) increase((buf.capacity * increasing).toInt)
      buf.put(b.toByte)
    }
    protected def increase(newCapacity: Int): Unit = {
      buf.limit(buf.position)
      buf.rewind
      val newBuffer =
        if (onHeap) ByteBuffer.allocate(newCapacity)
        else  ByteBuffer.allocateDirect(newCapacity)
      newBuffer.put(buf)
      buf.clear
      buf = newBuffer
    }
    def size: Long = buf.position
    def capacity: Long = buf.capacity
    def byteBuffer: ByteBuffer = buf
  }
  object ExpandingByteBufferOutputStream {
    val DEFAULT_INCREASING_FACTOR = 1.5f
    def apply(size: Int, increasingBy: Float, onHeap: Boolean) = {
      if (increasingBy <= 1) throw new IllegalArgumentException("Increasing Factor must be greater than 1.0")
      val buffer: ByteBuffer =
        if (onHeap) ByteBuffer.allocate(size)
        else ByteBuffer.allocateDirect(size)
      new ExpandingByteBufferOutputStream(buffer,onHeap)
    }
    def apply(size: Int): ExpandingByteBufferOutputStream = {
      apply(size, ExpandingByteBufferOutputStream.DEFAULT_INCREASING_FACTOR, false)
    }

    def apply(size: Int, onHeap: Boolean): ExpandingByteBufferOutputStream = {
      apply(size, ExpandingByteBufferOutputStream.DEFAULT_INCREASING_FACTOR, onHeap)
    }

    def apply(size: Int, increasingBy: Float): ExpandingByteBufferOutputStream = {
      apply(size, increasingBy, false)
    }

  }
  def cqlFileToBytes(fileName: String): ByteBuffer = {
    val fis = new FileInputStream(fileName)
    val b = new Array[Byte](fis.available + 1)
    val length = b.length
    fis.read(b)
    ByteBuffer.wrap(b)
  }
  def cqlBytesToFile(bytes: ByteBuffer, fileName: String)(
        implicit mat: Materializer): Future[IOResult] = {
    val source = StreamConverters.fromInputStream(() => ByteBufferInputStream(bytes))
    source.runWith(FileIO.toPath(Paths.get(fileName)))
  }
  def cqlDateTimeString(date: java.util.Date, fmt: String): String = {
    val outputFormat = new java.text.SimpleDateFormat(fmt)
    outputFormat.format(date)
  }
  def useJava8DateTime(cluster: Cluster) = {
    //for jdk8 datetime format
    cluster.getConfiguration().getCodecRegistry()
      .register(InstantCodec.instance)
  }
}

CQLEngineDemo.scala

import scala.util._
import akka.actor.ActorSystem
import akka.stream.ActorMaterializer
import com.datastax.driver.core._
import CQLEngine._
import CQLHelpers._
import com.datastax.driver.core.LocalDate
import java.nio.ByteBuffer
import scala.concurrent.duration._

object CQLEngineDemo extends App {

  //#init-mat
  implicit val cqlsys = ActorSystem("cqlSystem")
  implicit val mat = ActorMaterializer()
  implicit val ec = cqlsys.dispatcher

  val cluster = new Cluster
  .Builder()
    .addContactPoints("localhost")
    .withPort(9042)
    .build()

  useJava8DateTime(cluster)
  implicit val session = cluster.connect()

  val createCQL ="""
  CREATE TABLE testdb.members (
    id UUID primary key,
    name TEXT,
    description TEXT,
    birthday DATE,
    created_at TIMESTAMP,
    picture BLOB
  )"""

  val ctxCreate = CQLContext().setCommand(createCQL)

  val ctxInsert = CQLContext().setCommand("insert into testdb.members(id,name,description,birthday,created_at,picture)" +
    " values(uuid(),?,?,?,?,?)", "alan xu", "alan-xu", CQLDate(1966, 11, 27), CQLDateTimeNow, cqlFileToBytes("/users/tiger/Nobody.png"))

  val createData = for {
    createTable <- cqlExecute(ctxCreate)
    insertData <- cqlExecute(ctxInsert)
  } yield(createTable, insertData)

  createData.onComplete {
    case Success((c,i)) => println(s"Create Table: $c, Insert Data $i")
    case Failure(e) => println(e.getMessage)
  }
  scala.io.StdIn.readLine()
  //data model
  case class Member(
                     id: String,
                     name: String,
                     description: Option[String] = None,
                     birthday: LocalDate,
                     createdAt: java.util.Date,
                     picture: Option[ByteBuffer] = None)

  //data row converter
  val toMember = (rs: Row) => Member(
    id = rs.getUUID("id").toString,
    name = rs.getString("name"),
    description = {
      val d = rs.getString("description")
      if (d == null)
        None
      else
        Some(d)

      Some(rs.getColumnDefinitions.toString)
    },
    birthday = rs.getDate("birthday"),
    createdAt = rs.getTimestamp("created_at"),
    picture = {
      val pic = rs.getBytes("picture")
      if (pic == null)
        None
      else
        Some(pic)

    }
  )

 try {
   val qtx = CQLQueryContext(statement = "select * from testdb.members", extractor = toMember)
   val (resultSet, vecResults) = fetchResultPage[Vector, Member](qtx)

   var vecMembers: Vector[Member] = vecResults

   var isExh = resultSet.isExhausted
   var nextPage: (ResultSet, Option[Vector[Member]]) = (resultSet, Some(vecResults))
   while (!isExh) {
     nextPage = fetchMorePages[Vector,Member](nextPage._1,1 second)(toMember)
     nextPage._2.foreach {vec =>
       vecMembers = vecMembers ++ vec
     }
     isExh = resultSet.isExhausted
   }
   vecMembers.foreach { m =>
     println(s"id: ${m.id}-name:${m.name}-${m.description} birthday: ${m.birthday.toString}")
     println(s"created_at: ${cqlDateTimeString(m.createdAt,"yyyy-MM-dd HH:mm:ss.SSS")}")
     m.picture match {
       case Some(buf) =>
         val fname = s"/users/tiger/pic-${m.name}.png"
         cqlBytesToFile(buf,fname)
         println(s"saving picture to $fname")
       case _ => println("empty picture!")
     }
   }
 } catch {
   case e: Exception => println(e.getMessage)
 }
  
  scala.io.StdIn.readLine()
  session.close()
  cluster.close()
  cqlsys.terminate()
  
}

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏张善友的专栏

如何结合IbatisNet的LIST遍历实现模糊查询

我仿照Java的Spring+Ibatis+Struct用Castle+IBatisNet+Asp.net的开发框架的DAO的基类:BaseSqlMapDao内...

2109
来自专栏码匠的流水账

聊聊storm supervisor的启动

storm-core-1.2.2-sources.jar!/org/apache/storm/daemon/supervisor/Supervisor.java

1533
来自专栏浪淘沙

MapReduce操作实例

要点:有一个combiner方法,可以在执行完map时调用,从而对数据进行先一步的处理,降低Reduce的IO压力。

2143
来自专栏码匠的流水账

聊聊storm的JoinBolt

storm-2.0.0/storm-client/src/jvm/org/apache/storm/bolt/JoinBolt.java

1564
来自专栏Netkiller

Struts Ajax Json

Netkiller Java 手札 Java, Servlet, JavaBean ... 5.4. Ajax + JSON struts.xml 中加入 ...

2623
来自专栏智能大石头

C++返回值优化RVO

返回值优化,是一种属于编译器的技术,它通过转换源代码和对象的创建来加快源代码的执行速度。RVO = return value optimization。 测试...

2959
来自专栏码匠的流水账

聊聊storm的ICommitterTridentSpout

storm-core-1.2.2-sources.jar!/org/apache/storm/trident/spout/ICommitterTridentSp...

1083
来自专栏Android知识点总结

看得见的数据结构Android版之双链表篇

651
来自专栏后端沉思录

自定义钉钉机器人报警

按照钉钉的文档来开发,创建机器人后,即可获取Webhook地址,整个过程还是很简单的,以上只是提供了一个思路.

2792
来自专栏Clive的技术分享

代码重构的方法

1844

扫码关注云+社区