专栏首页AI研习社谷歌开源 TFGAN,让训练和评估 GAN 变得更加简单

谷歌开源 TFGAN,让训练和评估 GAN 变得更加简单

三年前,蒙特利尔大学 Ian Goodfellow 等学者提出「生成式对抗网络」(Generative Adversarial Networks,GANs)的概念,并逐渐引起 AI 业内人士的注意。自 2016 年以来,学界、业界对 GAN 的兴趣出现「井喷」。近日,谷歌开源 TFGAN 轻量级的工具库,据悉,其设计初衷是让训练和评估 GAN 变得更加简单。

AI研习社将原文编译整理如下:

训练神经网络的时候,通常需要定义一个损失函数来告诉网络它离目标还有多远。例如,图像分类网络中通常会有一个损失函数,一旦给出错误的分类就会进行惩罚。如果一个网络把狗的照片错当成猫了,那将会出现很高的损失值。

然而,有些问题并不能轻松用损失函数来定义,特别是当它们涉及到人的感知时,比如图像压缩或文本转语音系统。

生成式对抗网络 (GAN) 这种机器学习技术已经在广泛的应用领域引导我们取得了进步,包括基于文本生成图像、超分辨率,以及机器人抓取的解决方案。然而,GAN 在理论和软件工程上都引入了新的挑战,想要跟上它这种快速的研究步伐也很难。

为了让基于 GAN 的实验更加容易,谷歌选择开源 TFGAN,这是一个轻量级的库,设计初衷是让训练和评估 GAN 变得简单。

它提供训练 GAN 的基础设施,也提供经过良好测试的损失和评估指标,并包括易于使用的示例,可以看到这个库极具表达性和灵活性。与此同时,谷歌还发布了一个教程,其中包括能快速基于自己的数据进行模型训练的高级 API。

上图展示了对抗损失对图像压缩的影响。最上面那行是来自 ImageNet 数据集的图像 patch。中间展示了用传统损失训练的图像压缩神经网络对图像进行压缩和解压缩的结果。底部是用传统损失和对抗性损失训练的网络对图像进行压缩和解压缩的结果。

虽然基于 GAN 损失训练的图像比起原图来,信息还是有所丢失,但比起其他的方法,图片更加清晰,包含更多细节。

TFGAN 可以从以下几个方面来支持实验。

  • 它提供简单的函数调用功能,能覆盖大部分的 GAN 用例,因此仅需几行代码你就能用自己的数据训练模型,而且因为是采用模块化的方式构建,它能覆盖更特殊的 GAN 设计。
  • 你可以任意使用自己想要的模块——损失、评估、特征、训练等模块,这些都是独立的。TFGAN 的轻量级设计意味着你可以将它与其他框架或原生 TensorFlow 代码一起使用。
  • 用 TFGAN 编写的 GAN 模型很容易从未来基础设施的改进中受益,你可以从大量已经实现的损失和特征值中进行选择,而不需要再重写。
  • 最后,代码经过了良好的测试,因此你不必担心使用 GAN 库时容易出现的数值或统计错误。

如上图,大多数文本转语音 (TTS) 神经系统产生的频谱图都过于平滑。当应用到 Tacotron TTS 系统时,GAN 可以重新创建一些更真实的纹理,这将减少输出音频中的人工痕迹。

TFGAN 的开源意味着你将与许多 Google 的研究人员使用的相同的工具,任何人都可以受益于谷歌在库中最先进的改进。

(完)

本文分享自微信公众号 - AI研习社(okweiwu),作者:思颖

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-12-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • AI 助你无码看片,生成对抗网络(GAN)大显身手

    作为一名久经片场的老司机,早就想写一些探讨驾驶技术的文章。这篇就介绍利用生成式对抗网络(GAN)的两个基本驾驶技能: 1) 去除(爱情)动作片中的马赛克 2) ...

    AI研习社
  • 来吧!带你漫游 Wasserstein GAN 的世界!

    前言 上次带大家写了原始版的 GAN,只生成了高斯分布。但兔子哥哥发现在 GAN 论文的底下,有 GAN 生成图片的 example。 ? 因此,这足以说明...

    AI研习社
  • 从零教你写一个完整的GAN(附代码)

    导言 啦啦啦,现今 GAN 算法可以算作 ML 领域下比较热门的一个方向。事实上,GAN 已经作为一种思想来渗透在 ML 的其余领域,从而做出了很多很 Am...

    AI研习社
  • 资源 | 谷歌开源TFGAN:轻量级生成对抗网络工具库

    机器之心
  • 学界 | Ian Goodfellow强力推荐:DeepMind提出Auto-encoding GAN的变分方法

    AI 科技评论按: 在机器学习研究领域,生成式对抗网络(GAN)在学习生成模型方面占据着统治性的地位,在使用图像数据进行训练的时候,GAN能够生成视觉上以假乱真...

    AI科技评论
  • 万字综述之生成对抗网络(GAN)

    前阵子学习 GAN 的过程发现现在的 GAN 综述文章大都是 2016 年 Ian Goodfellow 或者自动化所王飞跃老师那篇。可是在深度学习,GAN 领...

    机器之心
  • 万字综述之生成对抗网络:GAN

    前阵子学习 GAN 的过程发现现在的 GAN 综述文章大都是 2016 年 Ian Goodfellow 或者自动化所王飞跃老师那篇。可是在深度学习,GAN 领...

    Datawhale
  • [GAN学习系列] 初始GAN

    要说最近几年在深度学习领域最火的莫过于生成对抗网络,即 Generative Adversarial Networks(GANs)了。它是 Ian Goodfe...

    kbsc13
  • 历时 6 年发展, GAN 领域当下最热门的“弄潮儿”都有哪些?

    生成式对抗网络(Generative Adversarial Networks, GAN)诞生于2014年,它的作者Ian Goodfellow 因它而声名大噪...

    AI科技评论
  • DCGAN、WGAN、WGAN-GP、LSGAN、BEGAN原理总结及对比

    版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_25737169/article/d...

    DoubleV

扫码关注云+社区

领取腾讯云代金券