专栏首页AI研习社基于深度学习的医疗影像论文汇总(Deep Learning Papers on Medical Image Analysis)

基于深度学习的医疗影像论文汇总(Deep Learning Papers on Medical Image Analysis)

看到好东西,怎么能不分享呢。 第一次在知乎翻译,由于水平有限(不是谦虚的那种有限,是真的有限),有不准确的地方还望包涵,最重要的是,还望大佬们多多指正!

Background

To the best of our knowledge, this is the first list of deep learning papers on medical applications. There are couple of lists for deep learning papers in general, or computer vision, for example Awesome Deep Learning Papers(http://t.cn/R5GgRIi). In this list, I try to classify the papers based on their deep learning techniques and learning methodology. I believe this list could be a good starting point for DL researchers on Medical Applications.

这是第一个基于深度学习的医疗影像论文汇总。github上还有一些基于深度学习的计算机视觉论文汇总,比如Awesome Deep Vision(http://t.cn/RLvTzjn);以及一些不限于应用的深度学习论文汇总,比如Awesome Deep Learning Papers(http://t.cn/R5GgRIi)。在这个汇总里,我会尽量根据不同的深度学习技术(deep learning techniques)和学习方法(learning methodology)去分类。

Criteria

1,A list of top deep learning papers published since 2015. 2,Papers are collected from peer-reviewed journals and high reputed conferences. However, it may have recent papers on arXiv. 3,A meta-data is required along with the paper, i.e. Deep Learning technique, Imaging Modality, Area of Interest, Clinical Database (DB).

  1. 自2015年起,顶会顶刊上的深度学习论文;
  2. 同行评议的期刊和知名度较高的会议,以及最近的arXiv(arXiv:CV & PR:http://t.cn/RWAEJSI)论文。

医疗论文期刊/会议:

  • Medical Image Analysis (MedIA)(http://t.cn/RWAEWNJ)
  • IEEE Transaction on Medical Imaging (IEEE-TMI)(https://ieee-tmi.org/)
  • IEEE Transaction on Biomedical Engineering (IEEE-TBME)(https://tbme.embs.org/)

PS:暑假师兄做的work投到了TBME,最近我接着师兄的work继续做。我们的任务是Kaggle比赛的糖尿病视网膜病变检测(Diabetic Retinopathy Detection )。

  • IEEE Journal of Biomedical and Health Informatics (IEEE-JBHI)(http://t.cn/RWAnkiL)
  • International Journal on Computer Assisted Radiology and Surgery (IJCARS)(http://t.cn/zOTPHNL)
  • International Conference on Information Processing in Medical Imaging (IPMI)
  • International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
  • International Conference on Information Processing in Computer-Assisted Interventions (IPCAI)
  • IEEE International Symposium on Biomedical Imaging (ISBI)

Shortcuts

3.1,深度学习技术:

  • NN: Neural Networks
  • MLP: Multilayer Perceptron
  • RBM: Restricted Boltzmann Machine
  • SAE: Stacked Auto-Encoders
  • CAE: Convolutional Auto-Encoders
  • CNN: Convolutional Neural Networks
  • RNN: Recurrent Neural Networks
  • LSTM: Long Short Term Memory
  • M-CNN: Multi-Scale/View/Stream CNN
  • FCN: Fully Convolutional Networks

3.2,成像方式:

  • US: Ultrasound
  • MR/MRI: Magnetic Resonance Imaging
  • PET: Positron Emission Tomography
  • MG: Mammography
  • CT: Computed Tompgraphy
  • H&E: Hematoxylin & Eosin Histology Images
  • RGB: Optical Images

Table of Contents

4.1,Deep Learning Techniques

  • AutoEncoders/ Stacked AutoEncoders(http://t.cn/RWAuKrS)
  • Convolutional Neural Networks(http://t.cn/RWAuHGU)
  • Recurrent Neural Networks(http://t.cn/RWAu119)
  • Generative Adversarial Networks(http://t.cn/RWA3v8q)

4.2,Medical Applications

  • Annotation(http://t.cn/RWA3fHN)
  • Classification(http://t.cn/RWA39G5)
  • Detection/ Localization(http://t.cn/RWA3lOL)
  • Segmentation(http://t.cn/RWA3RoL)
  • Registration(http://t.cn/RWA3dJZ)
  • Regression(http://t.cn/RWA1Ply)
  • Other tasks(http://t.cn/RWA12NV)

Deep Learning Techniques

5.1,Auto-Encoders/ Stacked Auto-Encoders

5.2,Convolutional Neural Networks

  • AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images(http://t.cn/RWA1lmT)
  • Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images(http://t.cn/RWA1Rma)

5.3,Recurrent Neural Networks

5.4,Generative Adversarial Networks

Medical Applications

Annotation

  1. Deep learning of feature representation with multiple instance learning for medical image analysis(http://t.cn/RWA1FkV)
  2. AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images (http://t.cn/RWABUT7)

Classification

  1. Multi-scale Convolutional Neural Networks for Lung Nodule Classification(http://t.cn/RWADf0A)
  2. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks (http://t.cn/RWADSK4)
  3. Automatic Feature Learning to Grade Nuclear Cataracts Based on Deep Learning (http://t.cn/RWADYxw)
  4. Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks (http://t.cn/RWADk5G)
  5. A Deep Semantic Mobile Application for Thyroid Cytopathology (http://t.cn/RWAko5r)
  6. Alzheimer's Disease Diagnostics by a Deeply Supervised Adaptable 3D Convolutional Network (http://t.cn/RWAkcoj)
  7. Multi-resolution-tract CNN with hybrid pretrained and skin-lesion trained layers (http://t.cn/RWAkWVF)
  8. Towards Automated Melanoma Screening: Exploring Transfer Learning Schemes (http://t.cn/RWAkEnF)
  9. Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks (http://t.cn/RWAF7qb)
  10. 3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients (http://t.cn/RWAkkPX)
  11. Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans (http://t.cn/RWAFyHc)
  12. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring (http://t.cn/RWAFILN)
  13. Spectral Graph Convolutions for Population-based Disease Prediction (http://t.cn/RWAFohq)
  14. SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks (http://t.cn/RWAFYuV)

Detection / Localization

  1. 3D Deep Learning for Efficient and Robust Landmark Detection in Volumetric Data (http://t.cn/RWAstTB)
  2. Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks (http://t.cn/RWAs6xr)
  3. Automated anatomical landmark detection ondistal femur surface using convolutional neural network (http://t.cn/RWAsYbY)
  4. Automatic Fetal Ultrasound Standard Plane Detection Using Knowledge Transferred Recurrent Neural Networks (http://t.cn/RWAsn1T)
  5. Regressing Heatmaps for Multiple Landmark Localization using CNNs (http://t.cn/RW2vv2L)
  6. An artificial agent for anatomical landmark detection in medical images (http://t.cn/RW2vy2P)
  7. Real-time Standard Scan Plane Detection and Localisation in Fetal Ultrasound using Fully Convolutional Neural Networks (http://t.cn/RW2vft1)
  8. Recognizing end-diastole and end-systole frames via deep temporal regression network (http://t.cn/RW2vrQW)
  9. Improving Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation Neural Networks (http://t.cn/RW2vrQW)
  10. Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique Neural Networks (http://t.cn/RW2hTcw)
  11. Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks (http://t.cn/RW2Pu8C)
  12. Self-Transfer Learning for Fully Weakly Supervised Lesion Localization (http://t.cn/RW27xd4)
  13. Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images (http://t.cn/RWA1Rma)

Segmentation

  1. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation (http://t.cn/RW27lTz)
  2. Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields (http://t.cn/RW27n2Y)
  3. Automatic Liver and Tumor Segmentation of CT and MRI Volumes using Cascaded Fully Convolutional Neural Networks (http://t.cn/RibGTxx)
  4. SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks (http://t.cn/RWAFYuV)
  5. q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI (http://t.cn/RW2zfRN)(Section II.B.2)

Registration

  1. An Artificial Agent for Robust Image Registration (http://t.cn/RW2zWw4)

Regression

  1. Automated anatomical landmark detection ondistal femur surface using convolutional neural network (http://t.cn/RWAsYbY)
  2. q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI (http://t.cn/RW2zfRN)(Section II.B.1)

本文分享自微信公众号 - AI研习社(okweiwu),作者:周康

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-10-22

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 如何准备机器学习工程师的面试?

    本文给到的是相关具体可能会被问及的问题 (编程、基础算法、机器学习算法)。从本次关于算法工程师常见的九十个问题大多是各类网站的问题汇总,希望你能从中分析出一些端...

    AI研习社
  • 深度学习岗位面试问题一览

    本笔记主要问题来自以下两个问题,以及我自己面试过程中遇到的问题。 深度学习相关的职位面试时一般会问什么?会问一些传统的机器学习算法吗?(http://t.cn/...

    AI研习社
  • 最实用的 50 篇文章,教你搭建机器学习 APP

    2017 年 1 月到 12 月,我们比较了近 2 万篇关于创建机器学习应用程序的文章,并挑选了排名较前的前 50 篇供大家学习参考。 我们相信,跟着这个领...

    AI研习社
  • 深度学习岗位面试问题一览

    本笔记主要问题来自以下两个问题,以及我自己面试过程中遇到的问题。 深度学习相关的职位面试时一般会问什么?会问一些传统的机器学习算法吗?(http://t.cn/...

    AI研习社
  • 给一个SpringMVC的helloworld例子

    步骤和Servlet一样:做一个普通的dynamic web project:把所有的jar包直接拷贝到目录中就行了。不用再设置路径了。

    马克java社区
  • Docker下,极速体验pinpoint1.6.3

    pinpoint在分布式系统中的广泛应用,今天来体验pinpoint所提供的监控、调用链跟踪等服务,本次实战只关心体验服务,至于环境如何搭建、服务如何配置,留待...

    程序员欣宸
  • 面对危机再次出手! 华为耗资5千万美金买下俄罗斯人脸识别公司

    根据今日俄罗斯国家媒体 Sputnik 报道,华为目前已经完成对一家名为 Vocord 的莫斯科安防技术企业的收购。

    机器之心
  • 不会PS抠图?来试试这招吧!

    之前写Photoshop处理实验动物大体图片的内容,讲过使用钢笔工具抠除背景这一方法。

    Mark Chen
  • Android基础--JNI

    Dalvik虚拟机加载C库时,即执行System.loadLibrary()函数时,第一件事是调用JNI_OnLoad()函数。可以在JNI_OnLoad 去注...

    小蚂蚁与大象
  • 实况视频制作与Unreal引擎融合,带来更逼真的AR实况直播

    目前,从视效工具开发商Foundry到好莱坞电影公司,都在研究一种可以支持导演在片场实时录制CG asset,以及真人实景的技术,以呈现更加完美的AR作品。

    VRPinea

扫码关注云+社区

领取腾讯云代金券