基于深度学习的医疗影像论文汇总(Deep Learning Papers on Medical Image Analysis)

看到好东西,怎么能不分享呢。 第一次在知乎翻译,由于水平有限(不是谦虚的那种有限,是真的有限),有不准确的地方还望包涵,最重要的是,还望大佬们多多指正!

Background

To the best of our knowledge, this is the first list of deep learning papers on medical applications. There are couple of lists for deep learning papers in general, or computer vision, for example Awesome Deep Learning Papers(http://t.cn/R5GgRIi). In this list, I try to classify the papers based on their deep learning techniques and learning methodology. I believe this list could be a good starting point for DL researchers on Medical Applications.

这是第一个基于深度学习的医疗影像论文汇总。github上还有一些基于深度学习的计算机视觉论文汇总,比如Awesome Deep Vision(http://t.cn/RLvTzjn);以及一些不限于应用的深度学习论文汇总,比如Awesome Deep Learning Papers(http://t.cn/R5GgRIi)。在这个汇总里,我会尽量根据不同的深度学习技术(deep learning techniques)和学习方法(learning methodology)去分类。

Criteria

1,A list of top deep learning papers published since 2015. 2,Papers are collected from peer-reviewed journals and high reputed conferences. However, it may have recent papers on arXiv. 3,A meta-data is required along with the paper, i.e. Deep Learning technique, Imaging Modality, Area of Interest, Clinical Database (DB).

  1. 自2015年起,顶会顶刊上的深度学习论文;
  2. 同行评议的期刊和知名度较高的会议,以及最近的arXiv(arXiv:CV & PR:http://t.cn/RWAEJSI)论文。

医疗论文期刊/会议:

  • Medical Image Analysis (MedIA)(http://t.cn/RWAEWNJ)
  • IEEE Transaction on Medical Imaging (IEEE-TMI)(https://ieee-tmi.org/)
  • IEEE Transaction on Biomedical Engineering (IEEE-TBME)(https://tbme.embs.org/)

PS:暑假师兄做的work投到了TBME,最近我接着师兄的work继续做。我们的任务是Kaggle比赛的糖尿病视网膜病变检测(Diabetic Retinopathy Detection )。

  • IEEE Journal of Biomedical and Health Informatics (IEEE-JBHI)(http://t.cn/RWAnkiL)
  • International Journal on Computer Assisted Radiology and Surgery (IJCARS)(http://t.cn/zOTPHNL)
  • International Conference on Information Processing in Medical Imaging (IPMI)
  • International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
  • International Conference on Information Processing in Computer-Assisted Interventions (IPCAI)
  • IEEE International Symposium on Biomedical Imaging (ISBI)

Shortcuts

3.1,深度学习技术:

  • NN: Neural Networks
  • MLP: Multilayer Perceptron
  • RBM: Restricted Boltzmann Machine
  • SAE: Stacked Auto-Encoders
  • CAE: Convolutional Auto-Encoders
  • CNN: Convolutional Neural Networks
  • RNN: Recurrent Neural Networks
  • LSTM: Long Short Term Memory
  • M-CNN: Multi-Scale/View/Stream CNN
  • FCN: Fully Convolutional Networks

3.2,成像方式:

  • US: Ultrasound
  • MR/MRI: Magnetic Resonance Imaging
  • PET: Positron Emission Tomography
  • MG: Mammography
  • CT: Computed Tompgraphy
  • H&E: Hematoxylin & Eosin Histology Images
  • RGB: Optical Images

Table of Contents

4.1,Deep Learning Techniques

  • AutoEncoders/ Stacked AutoEncoders(http://t.cn/RWAuKrS)
  • Convolutional Neural Networks(http://t.cn/RWAuHGU)
  • Recurrent Neural Networks(http://t.cn/RWAu119)
  • Generative Adversarial Networks(http://t.cn/RWA3v8q)

4.2,Medical Applications

  • Annotation(http://t.cn/RWA3fHN)
  • Classification(http://t.cn/RWA39G5)
  • Detection/ Localization(http://t.cn/RWA3lOL)
  • Segmentation(http://t.cn/RWA3RoL)
  • Registration(http://t.cn/RWA3dJZ)
  • Regression(http://t.cn/RWA1Ply)
  • Other tasks(http://t.cn/RWA12NV)

Deep Learning Techniques

5.1,Auto-Encoders/ Stacked Auto-Encoders

5.2,Convolutional Neural Networks

  • AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images(http://t.cn/RWA1lmT)
  • Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images(http://t.cn/RWA1Rma)

5.3,Recurrent Neural Networks

5.4,Generative Adversarial Networks

Medical Applications

Annotation

  1. Deep learning of feature representation with multiple instance learning for medical image analysis(http://t.cn/RWA1FkV)
  2. AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images (http://t.cn/RWABUT7)

Classification

  1. Multi-scale Convolutional Neural Networks for Lung Nodule Classification(http://t.cn/RWADf0A)
  2. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks (http://t.cn/RWADSK4)
  3. Automatic Feature Learning to Grade Nuclear Cataracts Based on Deep Learning (http://t.cn/RWADYxw)
  4. Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks (http://t.cn/RWADk5G)
  5. A Deep Semantic Mobile Application for Thyroid Cytopathology (http://t.cn/RWAko5r)
  6. Alzheimer's Disease Diagnostics by a Deeply Supervised Adaptable 3D Convolutional Network (http://t.cn/RWAkcoj)
  7. Multi-resolution-tract CNN with hybrid pretrained and skin-lesion trained layers (http://t.cn/RWAkWVF)
  8. Towards Automated Melanoma Screening: Exploring Transfer Learning Schemes (http://t.cn/RWAkEnF)
  9. Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks (http://t.cn/RWAF7qb)
  10. 3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients (http://t.cn/RWAkkPX)
  11. Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans (http://t.cn/RWAFyHc)
  12. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring (http://t.cn/RWAFILN)
  13. Spectral Graph Convolutions for Population-based Disease Prediction (http://t.cn/RWAFohq)
  14. SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks (http://t.cn/RWAFYuV)

Detection / Localization

  1. 3D Deep Learning for Efficient and Robust Landmark Detection in Volumetric Data (http://t.cn/RWAstTB)
  2. Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks (http://t.cn/RWAs6xr)
  3. Automated anatomical landmark detection ondistal femur surface using convolutional neural network (http://t.cn/RWAsYbY)
  4. Automatic Fetal Ultrasound Standard Plane Detection Using Knowledge Transferred Recurrent Neural Networks (http://t.cn/RWAsn1T)
  5. Regressing Heatmaps for Multiple Landmark Localization using CNNs (http://t.cn/RW2vv2L)
  6. An artificial agent for anatomical landmark detection in medical images (http://t.cn/RW2vy2P)
  7. Real-time Standard Scan Plane Detection and Localisation in Fetal Ultrasound using Fully Convolutional Neural Networks (http://t.cn/RW2vft1)
  8. Recognizing end-diastole and end-systole frames via deep temporal regression network (http://t.cn/RW2vrQW)
  9. Improving Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation Neural Networks (http://t.cn/RW2vrQW)
  10. Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique Neural Networks (http://t.cn/RW2hTcw)
  11. Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks (http://t.cn/RW2Pu8C)
  12. Self-Transfer Learning for Fully Weakly Supervised Lesion Localization (http://t.cn/RW27xd4)
  13. Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images (http://t.cn/RWA1Rma)

Segmentation

  1. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation (http://t.cn/RW27lTz)
  2. Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields (http://t.cn/RW27n2Y)
  3. Automatic Liver and Tumor Segmentation of CT and MRI Volumes using Cascaded Fully Convolutional Neural Networks (http://t.cn/RibGTxx)
  4. SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks (http://t.cn/RWAFYuV)
  5. q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI (http://t.cn/RW2zfRN)(Section II.B.2)

Registration

  1. An Artificial Agent for Robust Image Registration (http://t.cn/RW2zWw4)

Regression

  1. Automated anatomical landmark detection ondistal femur surface using convolutional neural network (http://t.cn/RWAsYbY)
  2. q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI (http://t.cn/RW2zfRN)(Section II.B.1)

原文发布于微信公众号 - AI研习社(okweiwu)

原文发表时间:2017-10-22

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

【论文推荐】最新6篇目标检测相关论文—场景文本检测 、显著对象、语义知识转移、混合监督目标检测、域自适应、车牌识别

【导读】专知内容组整理了最近六篇目标检测(Object Detection)相关文章,为大家进行介绍,欢迎查看! 1. Rotation-Sensitive R...

6776
来自专栏专知

【干货】初学者的深度学习论文打怪升级指南

,【导读】人工智能研究专家Flood Sung针对近几年深度学习的研究进展提供了一个非常详细的阅读清单。如果你在深度学习领域是一个新手,你可以会想知道如何从哪篇...

39610
来自专栏专知

【论文推荐】最新九篇目标检测相关论文—常识性知识转移、尺度不敏感、多尺度位置感知、渐进式域适应、时间感知特征图、人机合作

【导读】专知内容组整理了最近七篇目标检测(Object Detection)相关文章,为大家进行介绍,欢迎查看! 1.Single-Shot Object De...

8297
来自专栏专知

【专知荟萃18】目标跟踪Object Tracking知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)

目标跟踪 (Object Tracking/Visual Tracking) 专知荟萃 入门学习 进阶文章 Benchmark 综述 Tutorial 代码 领...

2.8K6
来自专栏专知

【论文推荐】最新六篇图像分割相关论文—控制、全卷积网络、子空间表示、多模态图像分割

【导读】专知内容组整理了最近六篇图像分割(Image Segmentation)相关文章,为大家进行介绍,欢迎查看! 1.Virtual-to-Real: Le...

4505
来自专栏专知

【论文推荐】最新6篇图像分割相关论文—隐马尔可夫随机场、级联三维全卷积、信号处理、全卷积网络、多源域适应、循环分割

【导读】专知内容组整理了最近六篇图像分割(Image Segmentation)相关文章,为大家进行介绍,欢迎查看! 1.Combination of Hidd...

4046
来自专栏YoungGy

LinearAlgebra_3

矩阵空间秩一矩阵小世界图 矩阵空间 秩一矩阵 小世界图 图和网络 零空间 左零空间 行空间 欧拉公式 工业用公式 正交向量和子空间 向量正交 子空间正交 矩阵的...

3019
来自专栏专知

【论文推荐】最新七篇图像分割相关论文—域适应深度表示学习、循环残差卷积、二值分割、图像合成、无监督跨模态

4385
来自专栏专知

【论文推荐】最新6篇目标跟踪相关论文—动态记忆网络、相关滤波器、单次学习、相关、循环自回归网络、三维多目标

【导读】专知内容组整理了最近六篇目标跟踪(Object Tracking)相关文章,为大家进行介绍,欢迎查看! 1.Learning Dynamic Memor...

4687
来自专栏目标检测和深度学习

全球最全计算机视觉资料(3:目标追踪)

3381

扫码关注云+社区

领取腾讯云代金券