前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >OpenCV亚像素角点cornerSubPixel()源代码分析

OpenCV亚像素角点cornerSubPixel()源代码分析

作者头像
一棹烟波
发布2018-03-19 17:29:03
1.8K0
发布2018-03-19 17:29:03
举报
文章被收录于专栏:一棹烟波一棹烟波

  上一篇博客中讲到了goodFeatureToTrack()这个API函数能够获取图像中的强角点。但是获取的角点坐标是整数,但是通常情况下,角点的真实位置并不一定在整数像素位置,因此为了获取更为精确的角点位置坐标,需要角点坐标达到亚像素(subPixel)精度。

1. 求取亚像素精度的原理

  找到一篇讲述原理非常清楚的文档

https://xueyayang.github.io/pdf_posts/%E4%BA%9A%E5%83%8F%E7%B4%A0%E8%A7%92%E7%82%B9%E7%9A%84%E6%B1%82%E6%B3%95.pdf,贴上来,如下:

 2. OpenCV源代码分析

  OpenCV中有cornerSubPixel()这个API函数用来针对初始的整数角点坐标进行亚像素精度的优化,该函数原型如下:

代码语言:javascript
复制
void cv::cornerSubPix( InputArray _image, InputOutputArray _corners,
                       Size win, Size zeroZone, TermCriteria criteria )

  _image为输入的单通道图像;_corners为提取的初始整数角点(比如用goodFeatureToTrack提取的强角点);win为求取亚像素角点的窗口大小,比如设置Size(11,11),需要注意的是11为半径,则窗口大小为23x23;zeroZone是设置的“零区域”,在搜索窗口内,设置的“零区域”内的值不会被累加,权重值为0。如果设置为Size(-1,-1),则表示没有这样的区域;critteria是条件阈值,包括迭代次数阈值和误差精度阈值,一旦其中一项条件满足设置的阈值,则停止迭代,获得亚像素角点。

  这个API通过下面示例的语句进行调用:

代码语言:javascript
复制
cv::cornerSubPix(grayImg, pts, cv::Size(11, 11), cv::Size(-1, -1), cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));

   首先看criteria包含的两个条件阈值在代码中是怎么设置的。如下所示,最大迭代次数为100次,误差精度为eps*eps,也就是0.1*0.1。

代码语言:javascript
复制
    const int MAX_ITERS = 100;
    int win_w = win.width * 2 + 1, win_h = win.height * 2 + 1;
    int i, j, k;
    int max_iters = (criteria.type & CV_TERMCRIT_ITER) ? MIN(MAX(criteria.maxCount, 1), MAX_ITERS) : MAX_ITERS;
    double eps = (criteria.type & CV_TERMCRIT_EPS) ? MAX(criteria.epsilon, 0.) : 0;
    eps *= eps; // use square of error in comparsion operations

  然后是高斯权重的计算,如下所示,窗口中心附近权重高,越往窗口边界权重越小。如果设置的有“零区域”,则权重值设置为0。计算出的权重分布如下图:

代码语言:javascript
复制
Mat maskm(win_h, win_w, CV_32F), subpix_buf(win_h+2, win_w+2, CV_32F);
    float* mask = maskm.ptr<float>();

    for( i = 0; i < win_h; i++ )
    {
        float y = (float)(i - win.height)/win.height;
        float vy = std::exp(-y*y);
        for( j = 0; j < win_w; j++ )
        {
            float x = (float)(j - win.width)/win.width;
            mask[i * win_w + j] = (float)(vy*std::exp(-x*x));
        }
    }

    // make zero_zone
    if( zeroZone.width >= 0 && zeroZone.height >= 0 &&
        zeroZone.width * 2 + 1 < win_w && zeroZone.height * 2 + 1 < win_h )
    {
        for( i = win.height - zeroZone.height; i <= win.height + zeroZone.height; i++ )
        {
            for( j = win.width - zeroZone.width; j <= win.width + zeroZone.width; j++ )
            {
                mask[i * win_w + j] = 0;
            }
        }
    }

  接下来就是针对每个初始角点,按照上述公式,逐个进行迭代求取亚像素角点,代码如下。

  ① 代码中CI2为本次迭代获取的亚像素角点位置,CI为上次迭代获取的亚像素角点位置,CT是初始的整数角点位置。

  ② 每次迭代结束计算CI与CI2之间的欧式距离err,如果两者之间的欧式距离err小于设定的阈值,或者迭代次数达到设定的阈值,则停止迭代。

  ③停止迭代后,需要再次判断最终的亚像素角点位置和初始整数角点之间的差异,如果差值大于设定窗口尺寸的一半,则说明最小二乘计算中收敛性不好,丢弃计算得到的亚像素角点,仍然使用初始的整数角点。

代码语言:javascript
复制
// do optimization loop for all the points
    for( int pt_i = 0; pt_i < count; pt_i++ )
    {
        Point2f cT = corners[pt_i], cI = cT;
        int iter = 0;
        double err = 0;

        do
        {
            Point2f cI2;
            double a = 0, b = 0, c = 0, bb1 = 0, bb2 = 0;

            getRectSubPix(src, Size(win_w+2, win_h+2), cI, subpix_buf, subpix_buf.type());
            const float* subpix = &subpix_buf.at<float>(1,1);

            // process gradient
            for( i = 0, k = 0; i < win_h; i++, subpix += win_w + 2 )
            {
                double py = i - win.height;

                for( j = 0; j < win_w; j++, k++ )
                {
                    double m = mask[k];
                    double tgx = subpix[j+1] - subpix[j-1];
                    double tgy = subpix[j+win_w+2] - subpix[j-win_w-2];
                    double gxx = tgx * tgx * m;
                    double gxy = tgx * tgy * m;
                    double gyy = tgy * tgy * m;
                    double px = j - win.width;

                    a += gxx;
                    b += gxy;
                    c += gyy;

                    bb1 += gxx * px + gxy * py;
                    bb2 += gxy * px + gyy * py;
                }
            }

            double det=a*c-b*b;
            if( fabs( det ) <= DBL_EPSILON*DBL_EPSILON )
                break;

            // 2x2 matrix inversion
            double scale=1.0/det;
            cI2.x = (float)(cI.x + c*scale*bb1 - b*scale*bb2);
            cI2.y = (float)(cI.y - b*scale*bb1 + a*scale*bb2);
            err = (cI2.x - cI.x) * (cI2.x - cI.x) + (cI2.y - cI.y) * (cI2.y - cI.y);
            cI = cI2;
            if( cI.x < 0 || cI.x >= src.cols || cI.y < 0 || cI.y >= src.rows )
                break;
        }
        while( ++iter < max_iters && err > eps );

        // if new point is too far from initial, it means poor convergence.
        // leave initial point as the result
        if( fabs( cI.x - cT.x ) > win.width || fabs( cI.y - cT.y ) > win.height )
            cI = cT;

        corners[pt_i] = cI;
    }

  自己参照OpenCV源代码写了一个myCornerSubPix()接口函数以便加深理解,如下,仅供参考:

代码语言:javascript
复制
//获取窗口内子图像
bool getSubImg(cv::Mat srcImg, cv::Point2f currPoint, cv::Mat &subImg)
{
    int subH = subImg.rows;
    int subW = subImg.cols;
    int x = int(currPoint.x+0.5f);
    int y = int(currPoint.y+0.5f);
    int initx = x - subImg.cols / 2;
    int inity = y - subImg.rows / 2;
    if (initx < 0 || inity < 0 || (initx+subW)>=srcImg.cols || (inity+subH)>=srcImg.rows )   return false;
    cv::Rect imgROI(initx, inity, subW, subH);
    subImg = srcImg(imgROI).clone();
    return true;
}

//亚像素角点提取
void myCornerSubPix(cv::Mat srcImg, vector<cv::Point2f> &pts, cv::Size winSize, cv::Size zeroZone, cv::TermCriteria criteria)
{
  //搜索窗口大小
    int winH = winSize.width * 2 + 1;
    int winW = winSize.height * 2 + 1;
    int winCnt = winH*winW;

  //迭代阈值限制
    int MAX_ITERS = 100;
    int max_iters = (criteria.type & CV_TERMCRIT_ITER) ? MIN(MAX(criteria.maxCount, 1), MAX_ITERS) : MAX_ITERS;
    double eps = (criteria.type & CV_TERMCRIT_EPS) ? MAX(criteria.epsilon, 0.) : 0;
    eps *= eps; // use square of error in comparsion operations

    //生成高斯权重
    cv::Mat weightMask = cv::Mat(winH, winW, CV_32FC1);
    for (int i = 0; i < winH; i++)
    {
        for (int j = 0; j < winW; j++)
        {
            float wx = (float)(j - winSize.width) / winSize.width;
            float wy = (float)(i - winSize.height) / winSize.height;
            float vx = exp(-wx*wx);
            float vy = exp(-wy*wy);
            weightMask.at<float>(i, j) = (float)(vx*vy);
        }
    }
  //遍历所有初始角点,依次迭代
    for (int k = 0; k < pts.size(); k++)
    {
        double a, b, c, bb1, bb2;
        
        cv::Mat subImg = cv::Mat::zeros(winH+2, winW+2, CV_8UC1);
        cv::Point2f currPoint = pts[k];
        cv::Point2f iterPoint = currPoint;

        int iterCnt = 0;
        double err = 0;
        //迭代
        do 
        {
            a = b = c = bb1 = bb2 = 0;
            //提取以当前点为中心的窗口子图像(为了方便求sobel微分,窗口各向四个方向扩展一行(列)像素)
            if ( !getSubImg(srcImg, iterPoint, subImg)) break;
            uchar *pSubData = (uchar*)subImg.data+winW+3;
            //如下计算参考上述推导公式,窗口内累加
            for (int i = 0; i < winH; i ++)
            {
                for (int j = 0; j < winW; j++)
                {
            //读取高斯权重值
                    double m = weightMask.at<float>(i, j);
                    //sobel算子求梯度
                    double sobelx = double(pSubData[i*(winW+2) + j + 1] - pSubData[i*(winW+2) + j - 1]);
                    double sobely = double(pSubData[(i+1)*(winW+2) + j] - pSubData[(i - 1)*(winW+2) + j]);
                    double gxx = sobelx*sobelx*m;
                    double gxy = sobelx*sobely*m;
                    double gyy = sobely*sobely*m;
                    a += gxx;
                    b += gxy;
                    c += gyy;
                    //邻域像素p的位置坐标
                    double px = j - winSize.width;
                    double py = i - winSize.height;

                    bb1 += gxx*px + gxy*py;
                    bb2 += gxy*px + gyy*py;
                }
            }
            double det = a*c - b*b;
            if (fabs(det) <= DBL_EPSILON*DBL_EPSILON)
                break;
            //求逆矩阵
            double invA = c / det;
            double invC = a / det;
            double invB = -b / det;
            //角点新位置
            cv::Point2f newPoint;
            newPoint.x = (float)(iterPoint.x + invA*bb1 + invB*bb2);
            newPoint.y = (float)(iterPoint.y + invB*bb1 + invC*bb2);
            //和上一次迭代之间的误差
            err = (newPoint.x - iterPoint.x)*(newPoint.x - iterPoint.x) + (newPoint.y - iterPoint.y)*(newPoint.y - iterPoint.y);
            //更新角点位置
            iterPoint = newPoint;
            iterCnt++;
            if (iterPoint.x < 0 || iterPoint.x >= srcImg.cols || iterPoint.y < 0 || iterPoint.y >= srcImg.rows)
                break;
        } while (err > eps && iterCnt < max_iters);
        //判断求得的亚像素角点与初始角点之间的差异,即:最小二乘法的收敛性
        if (fabs(iterPoint.x - currPoint.x) > winSize.width || fabs(iterPoint.y - currPoint.y) > winSize.height)
            iterPoint = currPoint;
    //保存算出的亚像素角点
        pts[k] = iterPoint;
    }
}

  夜已深,结束。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 求取亚像素精度的原理
  •  2. OpenCV源代码分析
相关产品与服务
腾讯云代码分析
腾讯云代码分析(内部代号CodeDog)是集众多代码分析工具的云原生、分布式、高性能的代码综合分析跟踪管理平台,其主要功能是持续跟踪分析代码,观测项目代码质量,支撑团队传承代码文化。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档