Mean Shift算法,又称为均值漂移算法,Mean Shift的概念最早是由Fukunage在1975年提出的,在后来由Yizong Cheng对其进行扩充,主要提出了两点的改进:
核函数的定义使得偏移值对偏移向量的贡献随之样本与被偏移点的距离的不同而不同。权重系数使得不同样本的权重不同。Mean Shift算法在聚类,图像平滑、分割以及视频跟踪等方面有广泛的应用。
上图的画图脚本如下所示:
'''
Date:201604026
@author: zhaozhiyong
'''
import matplotlib.pyplot as plt
import math
def cal_Gaussian(x, h=1):
molecule = x * x
denominator = 2 * h * h
left = 1 / (math.sqrt(2 * math.pi) * h)
return left * math.exp(-molecule / denominator)
x = []
for i in xrange(-40,40):
x.append(i * 0.5);
score_1 = []
score_2 = []
score_3 = []
score_4 = []
for i in x:
score_1.append(cal_Gaussian(i,1))
score_2.append(cal_Gaussian(i,2))
score_3.append(cal_Gaussian(i,3))
score_4.append(cal_Gaussian(i,4))
plt.plot(x, score_1, 'b--', label="h=1")
plt.plot(x, score_2, 'k--', label="h=2")
plt.plot(x, score_3, 'g--', label="h=3")
plt.plot(x, score_4, 'r--', label="h=4")
plt.legend(loc="upper right")
plt.xlabel("x")
plt.ylabel("N")
plt.show()
对于Mean Shift算法,是一个迭代的步骤,即先算出当前点的偏移均值,将该点移动到此偏移均值,然后以此为新的起始点,继续移动,直到满足最终的条件。此过程可由下图的过程进行说明(图片来自参考文献3):
从上述过程可以看出,在Mean Shift算法中,最关键的就是计算每个点的偏移均值,然后根据新计算的偏移均值更新点的位置。
在Mean Shift算法中,实际上是利用了概率密度,求得概率密度的局部最优解。
实验数据如下图所示(来自参考文献1):
画图的代码如下:
'''
Date:20160426
@author: zhaozhiyong
'''
import matplotlib.pyplot as plt
f = open("data")
x = []
y = []
for line in f.readlines():
lines = line.strip().split("\t")
if len(lines) == 2:
x.append(float(lines[0]))
y.append(float(lines[1]))
f.close()
plt.plot(x, y, 'b.', label="original data")
plt.title('Mean Shift')
plt.legend(loc="upper right")
plt.show()
#!/bin/python
#coding:UTF-8
'''
Date:20160426
@author: zhaozhiyong
'''
import math
import sys
import numpy as np
MIN_DISTANCE = 0.000001#mini error
def load_data(path, feature_num=2):
f = open(path)
data = []
for line in f.readlines():
lines = line.strip().split("\t")
data_tmp = []
if len(lines) != feature_num:
continue
for i in xrange(feature_num):
data_tmp.append(float(lines[i]))
data.append(data_tmp)
f.close()
return data
def gaussian_kernel(distance, bandwidth):
m = np.shape(distance)[0]
right = np.mat(np.zeros((m, 1)))
for i in xrange(m):
right[i, 0] = (-0.5 * distance[i] * distance[i].T) / (bandwidth * bandwidth)
right[i, 0] = np.exp(right[i, 0])
left = 1 / (bandwidth * math.sqrt(2 * math.pi))
gaussian_val = left * right
return gaussian_val
def shift_point(point, points, kernel_bandwidth):
points = np.mat(points)
m,n = np.shape(points)
#计算距离
point_distances = np.mat(np.zeros((m,1)))
for i in xrange(m):
point_distances[i, 0] = np.sqrt((point - points[i]) * (point - points[i]).T)
#计算高斯核
point_weights = gaussian_kernel(point_distances, kernel_bandwidth)
#计算分母
all = 0.0
for i in xrange(m):
all += point_weights[i, 0]
#均值偏移
point_shifted = point_weights.T * points / all
return point_shifted
def euclidean_dist(pointA, pointB):
#计算pointA和pointB之间的欧式距离
total = (pointA - pointB) * (pointA - pointB).T
return math.sqrt(total)
def distance_to_group(point, group):
min_distance = 10000.0
for pt in group:
dist = euclidean_dist(point, pt)
if dist < min_distance:
min_distance = dist
return min_distance
def group_points(mean_shift_points):
group_assignment = []
m,n = np.shape(mean_shift_points)
index = 0
index_dict = {}
for i in xrange(m):
item = []
for j in xrange(n):
item.append(str(("%5.2f" % mean_shift_points[i, j])))
item_1 = "_".join(item)
print item_1
if item_1 not in index_dict:
index_dict[item_1] = index
index += 1
for i in xrange(m):
item = []
for j in xrange(n):
item.append(str(("%5.2f" % mean_shift_points[i, j])))
item_1 = "_".join(item)
group_assignment.append(index_dict[item_1])
return group_assignment
def train_mean_shift(points, kenel_bandwidth=2):
#shift_points = np.array(points)
mean_shift_points = np.mat(points)
max_min_dist = 1
iter = 0
m, n = np.shape(mean_shift_points)
need_shift = [True] * m
#cal the mean shift vector
while max_min_dist > MIN_DISTANCE:
max_min_dist = 0
iter += 1
print "iter : " + str(iter)
for i in range(0, m):
#判断每一个样本点是否需要计算偏置均值
if not need_shift[i]:
continue
p_new = mean_shift_points[i]
p_new_start = p_new
p_new = shift_point(p_new, points, kenel_bandwidth)
dist = euclidean_dist(p_new, p_new_start)
if dist > max_min_dist:#record the max in all points
max_min_dist = dist
if dist < MIN_DISTANCE:#no need to move
need_shift[i] = False
mean_shift_points[i] = p_new
#计算最终的group
group = group_points(mean_shift_points)
return np.mat(points), mean_shift_points, group
if __name__ == "__main__":
#导入数据集
path = "./data"
data = load_data(path, 2)
#训练,h=2
points, shift_points, cluster = train_mean_shift(data, 2)
for i in xrange(len(cluster)):
print "%5.2f,%5.2f\t%5.2f,%5.2f\t%i" % (points[i,0], points[i, 1], shift_points[i, 0], shift_points[i, 1], cluster[i])
经过Mean Shift算法聚类后的数据如下所示:
'''
Date:20160426
@author: zhaozhiyong
'''
import matplotlib.pyplot as plt
f = open("data_mean")
cluster_x_0 = []
cluster_x_1 = []
cluster_x_2 = []
cluster_y_0 = []
cluster_y_1 = []
cluster_y_2 = []
center_x = []
center_y = []
center_dict = {}
for line in f.readlines():
lines = line.strip().split("\t")
if len(lines) == 3:
label = int(lines[2])
if label == 0:
data_1 = lines[0].strip().split(",")
cluster_x_0.append(float(data_1[0]))
cluster_y_0.append(float(data_1[1]))
if label not in center_dict:
center_dict[label] = 1
data_2 = lines[1].strip().split(",")
center_x.append(float(data_2[0]))
center_y.append(float(data_2[1]))
elif label == 1:
data_1 = lines[0].strip().split(",")
cluster_x_1.append(float(data_1[0]))
cluster_y_1.append(float(data_1[1]))
if label not in center_dict:
center_dict[label] = 1
data_2 = lines[1].strip().split(",")
center_x.append(float(data_2[0]))
center_y.append(float(data_2[1]))
else:
data_1 = lines[0].strip().split(",")
cluster_x_2.append(float(data_1[0]))
cluster_y_2.append(float(data_1[1]))
if label not in center_dict:
center_dict[label] = 1
data_2 = lines[1].strip().split(",")
center_x.append(float(data_2[0]))
center_y.append(float(data_2[1]))
f.close()
plt.plot(cluster_x_0, cluster_y_0, 'b.', label="cluster_0")
plt.plot(cluster_x_1, cluster_y_1, 'g.', label="cluster_1")
plt.plot(cluster_x_2, cluster_y_2, 'k.', label="cluster_2")
plt.plot(center_x, center_y, 'r+', label="mean point")
plt.title('Mean Shift 2')
#plt.legend(loc="best")
plt.show()