人类将可能操控AI?神经网络语言处理工作原理被破解

作者:刘光明

【新智元导读】近期,来自麻省理工学院计算机科学人工智能实验室(CSAIL)和卡塔尔计算研究所的研究人员已经通过新的解释技术,来分析神经网络做机器翻译和语音识别的训练过程。

神经网络通过分析大量的训练数据来学习并执行任务,这是近期人工智能领域最令人印象深刻的进展,包括语音识别和自动翻译系统。

然而,在训练过程中,神经网络以甚至其创造者都无法解释的方式来不断调整其内部设置。计算机科学最近的许多工作都聚焦于千方百计的弄清楚神经网络的工作原理。

在最近的几篇论文,来自麻省理工学院计算机科学人工智能实验室(CSAIL)和卡塔尔计算研究所的研究人员已经使用了新开发的解释技术,来分析神经网络做机器翻译和语音识别的训练过程,该新技术已被应用于其他领域。

他们对神经网络的工作原理有了基本认知。例如,这些系统似乎专注于较低级别的任务,如声音识别或部分语音识别,然后再转到更高级别的任务,如转录或语义解释。

但是研究人员也发现了翻译网络处理数据类型的一个惊人的遗漏,他们指出纠正这种遗漏会提高网络的性能。这种改进是适度的,但它指出了对神经网络的分析可能有助于提高人工智能系统的准确性。

“从历史角度看,在机器翻译里,有一个具有不同层次的金字塔,” CSAIL一位高级研究科学家说。这位科学家在是麻省理工学院电气工程和计算机科学的毕业生,曾参与Yonatan Belinkov项目。”在最低层有文字,表层形式,金字塔的顶层是一种语际表示,在做语法和语义时会达到不同的层次。这是一个非常抽象的概念,意思是你在金字塔中爬得越高,就越容易翻译成一种新的语言,然后你就再往下走。所以Yonata所做的部分工作是找出在神经网络中这种概念的会是什么样的编码。”

近期在国际自然语言处理联合会议上发表了两篇论文。Belinkov是第一作者,Glass是资深作者。另一篇,Belinkov是一个联合作者。

他们都是来自卡塔尔计算研究所的研究人员,包括Lluís Màrquez,Hassan Sajjad,Nadir Durrani,Fahim Dalvi和Stephan Vogel。Belinkov和格拉斯是分析的语音识别系统的唯一作者。这篇文章是Belinkov上周神经信息处理会议上提出的。

分层处理

神经网络之所以得名,是因为它们大致接近人脑的结构。通常,它们被分层,每个层由许多简单的处理单元节点组成,每个节点都连接到上面和下面的层中的几个节点。数据被送入最低层,其节点处理它并将其传递给下一层。层之间的连接具有不同的“权重”,它决定了任何一个节点的输出转化到到下一个节点的计算量是多少。

在训练过程中,节点之间的权重不断调整。在网络被训练后,它的创建者可以确定所有连接的权重,但有成千上万个甚至多个节点,甚至它们之间有更多的连接,推断出这些权重编码的算法几乎是不可能的。

麻省理工和卡塔尔计算研究所研究人员的技术包括训练一个神经网络和使用它的每一层的输出,通过个别的培训案例,培养其他的神经网络来执行特定的任务。这使他们能够确定每个层优化的任务是什么。

在语音识别网络的案例中,Belinkov和Glass使用的单个层输出训练系统识别“语音”,区别于口语的发音单元。例如,“T”的发音在“Tea”“Tree”和“But”,是不同的,但语音识别系统已经把他们都用字母“T”转录。事实上,Belinkov和Glass发现,低层次的网络比高层次网络语言识别能力更强。在那里,可能区别是不重要的。

同样的,Glass, Belinkov和他们卡塔尔计算研究所的同事于去年夏天在语言协会年度大会上发布的文章表明,机器翻译网络的低层善于识别词类和形态,比如时态、数字和共轭。

语义理解

但是在新的论文中,他们表明网络的更高层次在语义标注方面更好。Belinkov解释说,一部分语音标签,能认识到“herself”是一个代词,但这个代词的语义的意义,在句子“she bought the book herself”和“she herself bought the book”是不同的。语义标注会分配不同的标签,给这两句话中的“herself“,就像一个机器翻译系统可能在一个给定的目标语言为它们找到不同的翻译。

最好的机器翻译系统使用所谓的编码解码模式,和麻省理工和卡塔尔计算研究所研究人员的神经网络一样。在这样的系统中,源语言中的输入经过几个被称为编码器的网络层来产生一个向量,一组数字代表某种输入的语义内容。该向量通过多个网络层的解码器来产生目标语言中的译文。

虽然编码器和解码器在一起训练,但它们可以被认为是独立的网络。研究人员发现,奇怪的是,编码器的低层善于区分形态,但解码器的更高层不是。所以Belinkov和卡塔尔计算研究所研究人员在训练网络时,不仅仅根据翻译的准确性,也根据目标语言中的形态分析来判定性能。从本质上讲,他们迫使解码器更好地区分形态。

使用这种技术,他们培训网络将英语翻译成德语,发现其精度提高3%。这不是一个革命性的进步,但这表明,探寻神经网络的本质可能不仅仅是一项学术活动。

本文分享自微信公众号 - 新智元(AI_era)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-12-12

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

神经科学新突破!新算法助力超算进行人类大脑模拟

---- 新智元编译 作者:谢永芬 【新智元导读】由德国于利希神经科学和医学研究所联合国际研究机构提出的新算法,解决了限制在E级超级计算机上模拟大脑神...

30880
来自专栏机器学习AI算法工程

R语言与机器学习(分类算法)神经网络

人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络...

67150
来自专栏AI科技评论

DeepMind发布Sonnet,帮你用TensorFlow快速搭建神经网络

去年 DeepMind 作出决定,将全部研究搬到 TensorFlow 框架上进行。 近一年时间过去,回头来看,DeepMind 认为这项选择十分正确——许多模...

30660
来自专栏AI科技评论

深度 | 论文被拒千百遍,团队不受待见,Yann LeCun为何仍待深度学习如初恋?

AI科技评论按:Yann LeCun是人工智能神经网络方面的大牛,现在是Facebook人工智能研发团队的领军人物。可是他的研究之路并不是一帆风顺,在神经网络变...

37170
来自专栏机器学习AI算法工程

神经网络训练中的Tricks之高效BP(反向传播算法)

Tricks!这是一个让人听了充满神秘和好奇的词。对于我们这些所谓的尝试应用机器学习技术解决某些问题的人,更是如此。曾记得,我们绞尽脑汁,搓手顿足,大喊“为什...

37460
来自专栏AI科技评论

学界 | 五年过去,Hinton的《神经网络和机器学习》还是最好的机器学习课程吗?

AI科技评论按:Hinton的深度学习课程早在2012年上线,对于这门课程,有学者认为它太过艰深,不适合初学者上手;也有的学生觉得它受益良多,是值得一学的好课程...

37660
来自专栏AI科技评论

深度神经网络发展历程全回顾:如何加速DNN运算?

深度神经网络(DNN)目前是许多现代AI应用的基础。自从DNN在语音识别和图像识别任务中展现出突破性的成果,使用DNN的应用数量呈爆炸式增加。这些DNN方法被大...

52160
来自专栏新智元

【神经网络会梦到电子羊吗?】“匹配模式”暴露神经网络致命缺陷

---- 新智元报道 来源:aiweirdness、gizmodo 编译:肖琴 【新智元导读】神经网络的专长之一是图像识别。谷歌、微软、IBM、Fac...

38390
来自专栏机器学习AI算法工程

判别模型、生成模型与朴素贝叶斯方法

1、判别模型与生成模型 回归模型其实是判别模型,也就是根据特征值来求结果的概率。形式化表示为 ? ,在参数 ? 确定的情况下,求解条件概率 ? 。通俗的解...

39860
来自专栏机器学习AI算法工程

R语言与机器学习(分类算法)logistic回归

由于我们在前面已经讨论过了神经网络的分类问题,如今再从最优化的角度来讨论logistic回归就显得有些不合适了。Logistic回归问题的最优化问题可以表述为:...

92740

扫码关注云+社区

领取腾讯云代金券

年度创作总结 领取年终奖励