专栏首页沃趣科技容器化RDS|计算存储分离架构下的IO优化
原创

容器化RDS|计算存储分离架构下的IO优化

沃趣科技

熊中哲·联合创始人/产品研发团队总监

在基于 KubernetesDocker 构建的私有 RDS 中, 普遍采用了计算存储分离架构. 该架构优势明显, 但对于数据库类 Latency Sensitive 应用而言, IO 性能问题无法回避, 下面分享一下我们针对 MySQL 做的优化以及优化后的收益.

计算存储分离架构

架构示意图如下:

存储层由分布式文件系统组成, 以 Provisoner 的方式集成到 Kubernetes .

在我们看来, 计算存储分离的最大优势在于:

将有状态的数据下沉到存储层, 这使得 RDS 在调度时, 无需感知计算节点的存储介质, 只需调度到满足计算资源要求的 Node, 数据库实例启动时, 只需在分布式文件系统挂载mappingvolume 即可. 可以显著的提高数据库实例的部署密度和计算资源利用率

其他的好处还有很多, 譬如架构更清晰, 扩展更方便, 问题定位更简单等,这里不赘述.

计算存储分离架构的缺点

俗话说的好

上帝为你关上一扇窗的同时, 再关上一扇门.

如下图所示

相较本地存储, 网络开销会成为 IO 开销的一部分, 我们认为会带来两个很明显的问题:

●数据库是 Latency Sensitive 型应用, 网络延时会极大影响数据库能力(QPS,TPS)

●在高密度部署的场景, 网络带宽会成为瓶颈, 可能导致计算 & 存储资源利用不充分.

其实还有一个极其重要的问题, 由于kubernetes 本身没有提供 Voting 服务和 类似 Oracle Rac 的 Fence 机制, 在计算存储分离架构下, 当集群发生脑裂, 并触发 Node Controller 和 Kubelet 的驱逐机制时, 可能会出现多个数据库实例同时访问一份数据文件导致 Data Corruption 的情况, 数据的损失对用户而言是不可估量也不可忍受的. 我们在 kubernetes 1.7.8 下使用 Oracle , MySQL 都可以100%复现这个场景, 通过在 Kubernetes 上添加 Fence 机制, 我们已解决该问题. 如果大家有兴趣, 会再做专门的分享.

下面, 就需要结合 MySQL 的特性来进行有针对性的优化.

以下测试方案的设计, 测试数据的梳理来自于沃趣科技

MySQL 专家 @董大爷@波多野老师.

DoubleWrite

MySQL 中我们首先想到了 DoubleWrite. 首先看下官方解释, 它是干什么的 :

The InnoDB doublewrite buffer was implemented to recover from half-written pages. This can happen when there's a power failure while InnoDB is writing a page to disk. On reading that page, InnoDB can discover the corruption from the mismatch of the page checksum. However, in order to recover, an intact copy of the page would be needed. The double write buffer provides such a copy. Whenever InnoDB flushes a page to disk, it is first written to the double write buffer. Only when the buffer is safely flushed to disk will InnoDB write the page to the final destination. When recovering, InnoDB scans the double write buffer and for each valid page in the buffer checks if the page in the data file is valid too. Although data is written twice, the doublewrite buffer does not require twice as much I/O, as data is written to the buffer in a large sequential chunk with a single fsync() call. There is extra time consumed however, and the effect becomes visible with fast storage and a heavy write load.

简单说 DoubleWrite 的实现是防止数据页写入时发生故障导致页损坏(partial write),所以每次写数据文件时都要将一份数据写到共享表空间中当启动时发现数据页 Checkum 校验不正确时会使用共享表空间中副本进行恢复,从 DoubleWrite 实现来看这部分会产生一定量的 IO . 所以,

最好的优化 就是减少 IO, 在底层存储介质或文件系统支持 Atomic Write的前提下, 可以关闭MySQL 的 DoubleWrite 以减少 IO

单机架构 : 关闭 DoubleWrite

MariaDB 已支持该功能(底层存储介质需支持 Atomic Write ), 并在单机环境做了相关测试.数据如下 :

结论 : 单机环境下, 启用Atomic Write(关闭 DoubleWrite )能立即带来30%左右的写性能改善

原文地址 : http://blog.mariadb.org/mariadb-introduces-atomic-writes/

计算存储分离架构 : 关闭 DoubleWrite

所以, 重点是我们需要测试一下在计算存储分离架构下(分布式存储必须支持 Atomic Write ), 关闭 DoubleWrite Buffer 的收益.

测试场景

●采用Sysbench 模拟 OLTP 负载模型 (跟 MariaDB 相同)

●数据库版本选择了更流行的 MySQL 5.7.19 (测试时的最新版本)

●由本地存储改为分布式文件系统

●测试数据量, 数据文件大写

○10GB

○100GB

测试结果 : 10GB数据量

Sysbench 指标

指标类型

线程个数

表数量

数据量

测试时长(分钟)

平均tps

平均qps

响应时间(95%)

oltp开双写

256

8

500W

10

5632

112643

73.13 ms

oltp关双写

256

8

500W

10

5647

112959

86.00 ms

分布式文件系统指标

在计算存储分离架构下, 启用Atomic Write(关闭 DoubleWrite ), 10GB数据量, 因为大部分数据已经缓存到数据库 buffer cache 中, 所以在 IO 不是瓶颈的情况下:

○Sysbench指标, 提升不明显

■tps ↑0.2656%,qps ↑0.2797%,rst ↑14.9651%

○分布式文件系统指标

■Throughput 下降53%, 显著优化了网络带宽

测试结果 : 100GB数据量

Sysbench 指标

指标类型

线程个数

表数量

数据量

测试时长(分钟)

平均tps

平均qps

响应时间(95%)

oltp开双写

256

8

500W

10

2260

45202

227.40 ms

oltp关双写

256

8

500W

10

2519

50394

277.21 ms

分布式文件系统指标

在计算存储分离架构下, 启用Atomic Write(关闭 DoubleWrite ), 100GB数据量, 因为大部分数据无法缓存到数据库 buffer cache 中, 所以在 IO 是瓶颈的情况下:

○Sysbench指标, 提升明显

■TPS ↑28.0892%,QPS ↑28.0893%,RST ↓169.2033%

○分布式文件系统指标

■IOPS 提升22.3%

■Latency 下降 39%

■在IOPS 提升22.3%的情况下, Throughput 仅多消耗 3.6%

总结

想让数据库安全,高效的运行到 KubernetesDocker 的架构下并不容易, 本文分享的只是众多问题之一, 任重而道远..., 想在上面持续发力的同学, 自求多福吧.

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 容器化RDS|计算存储分离架构下的 IO 优化

    在基于 Kubernetes 和 Docker 构建的私有 RDS 中,普遍采用了计算存储分离架构。该架构优势明显, 但对于数据库类 Latency Sensi...

    沃趣科技
  • 如何构建企业的业务永续解决方案-架构篇

    上篇文章《真正的双活产品,不仅仅是实现7×24小时》中,我们介绍了沃趣的同城双活性能,从性能指标来看,已经能够满足企业中对性能要求较高的核心业务。

    沃趣科技
  • Oracle Data Guard Feature 12cR2系列(一)

    Data Guard是Oracle推出的一种高可用性数据库方案,从Oracle 9i开始正式更名为Oracle Data Guard。Data Guard在11...

    沃趣科技
  • 容器化RDS|计算存储分离架构下的 IO 优化

    摘要 在基于 Kubernetes 和 Docker 构建的私有 RDS 中,普遍采用了计算存储分离架构。该架构优势明显, 但对于数据库类 Latency Se...

    IT大咖说
  • 容器化RDS|计算存储分离架构下的 IO 优化

    在基于 Kubernetes 和 Docker 构建的私有 RDS 中,普遍采用了计算存储分离架构。该架构优势明显, 但对于数据库类 Latency Sensi...

    沃趣科技
  • 容器化RDS|计算存储分离架构下的IO优化

    在基于 Kubernetes 和 Docker 构建的私有 RDS 中,普遍采用了计算存储分离架构。该架构优势明显, 但对于数据库类 Latency Sensi...

    CSDN技术头条
  • Morton码

    Morton码是对栅格格网进行编码的一种算法,在Google中搜索Morton,搜索结果第一位是Wikipedia的Z-order Curve,这是因为Mort...

    卡尔曼和玻尔兹曼谁曼
  • WordPress免费博客杂志主题CX-MULTI

    CX-MULTI由 @小牛爱奋斗 开发制作定位于一款简洁大气的博客杂志类主题,自适应平板和手机等设备,您可以用来搭建您的个人博客,或者作品展示类网站,主题为免费...

    开心分享
  • 机械式学习目标与过程描述(续)

    用户1908973
  • 聊聊artemis的handleConnectionFailure

    activemq-artemis-2.11.0/artemis-core-client/src/main/java/org/apache/activemq/ar...

    codecraft

扫码关注云+社区

领取腾讯云代金券