容器化RDS|计算存储分离架构下的IO优化

沃趣科技

熊中哲·联合创始人/产品研发团队总监

在基于 KubernetesDocker 构建的私有 RDS 中, 普遍采用了计算存储分离架构. 该架构优势明显, 但对于数据库类 Latency Sensitive 应用而言, IO 性能问题无法回避, 下面分享一下我们针对 MySQL 做的优化以及优化后的收益.

计算存储分离架构

架构示意图如下:

存储层由分布式文件系统组成, 以 Provisoner 的方式集成到 Kubernetes .

在我们看来, 计算存储分离的最大优势在于:

将有状态的数据下沉到存储层, 这使得 RDS 在调度时, 无需感知计算节点的存储介质, 只需调度到满足计算资源要求的 Node, 数据库实例启动时, 只需在分布式文件系统挂载mappingvolume 即可. 可以显著的提高数据库实例的部署密度和计算资源利用率

其他的好处还有很多, 譬如架构更清晰, 扩展更方便, 问题定位更简单等,这里不赘述.

计算存储分离架构的缺点

俗话说的好

上帝为你关上一扇窗的同时, 再关上一扇门.

如下图所示

相较本地存储, 网络开销会成为 IO 开销的一部分, 我们认为会带来两个很明显的问题:

●数据库是 Latency Sensitive 型应用, 网络延时会极大影响数据库能力(QPS,TPS)

●在高密度部署的场景, 网络带宽会成为瓶颈, 可能导致计算 & 存储资源利用不充分.

其实还有一个极其重要的问题, 由于kubernetes 本身没有提供 Voting 服务和 类似 Oracle Rac 的 Fence 机制, 在计算存储分离架构下, 当集群发生脑裂, 并触发 Node Controller 和 Kubelet 的驱逐机制时, 可能会出现多个数据库实例同时访问一份数据文件导致 Data Corruption 的情况, 数据的损失对用户而言是不可估量也不可忍受的. 我们在 kubernetes 1.7.8 下使用 Oracle , MySQL 都可以100%复现这个场景, 通过在 Kubernetes 上添加 Fence 机制, 我们已解决该问题. 如果大家有兴趣, 会再做专门的分享.

下面, 就需要结合 MySQL 的特性来进行有针对性的优化.

以下测试方案的设计, 测试数据的梳理来自于沃趣科技

MySQL 专家 @董大爷@波多野老师.

DoubleWrite

MySQL 中我们首先想到了 DoubleWrite. 首先看下官方解释, 它是干什么的 :

The InnoDB doublewrite buffer was implemented to recover from half-written pages. This can happen when there's a power failure while InnoDB is writing a page to disk. On reading that page, InnoDB can discover the corruption from the mismatch of the page checksum. However, in order to recover, an intact copy of the page would be needed. The double write buffer provides such a copy. Whenever InnoDB flushes a page to disk, it is first written to the double write buffer. Only when the buffer is safely flushed to disk will InnoDB write the page to the final destination. When recovering, InnoDB scans the double write buffer and for each valid page in the buffer checks if the page in the data file is valid too. Although data is written twice, the doublewrite buffer does not require twice as much I/O, as data is written to the buffer in a large sequential chunk with a single fsync() call. There is extra time consumed however, and the effect becomes visible with fast storage and a heavy write load.

简单说 DoubleWrite 的实现是防止数据页写入时发生故障导致页损坏(partial write),所以每次写数据文件时都要将一份数据写到共享表空间中当启动时发现数据页 Checkum 校验不正确时会使用共享表空间中副本进行恢复,从 DoubleWrite 实现来看这部分会产生一定量的 IO . 所以,

最好的优化 就是减少 IO, 在底层存储介质或文件系统支持 Atomic Write的前提下, 可以关闭MySQL 的 DoubleWrite 以减少 IO

单机架构 : 关闭 DoubleWrite

MariaDB 已支持该功能(底层存储介质需支持 Atomic Write ), 并在单机环境做了相关测试.数据如下 :

结论 : 单机环境下, 启用Atomic Write(关闭 DoubleWrite )能立即带来30%左右的写性能改善

原文地址 : http://blog.mariadb.org/mariadb-introduces-atomic-writes/

计算存储分离架构 : 关闭 DoubleWrite

所以, 重点是我们需要测试一下在计算存储分离架构下(分布式存储必须支持 Atomic Write ), 关闭 DoubleWrite Buffer 的收益.

测试场景

●采用Sysbench 模拟 OLTP 负载模型 (跟 MariaDB 相同)

●数据库版本选择了更流行的 MySQL 5.7.19 (测试时的最新版本)

●由本地存储改为分布式文件系统

●测试数据量, 数据文件大写

○10GB

○100GB

测试结果 : 10GB数据量

Sysbench 指标

指标类型

线程个数

表数量

数据量

测试时长(分钟)

平均tps

平均qps

响应时间(95%)

oltp开双写

256

8

500W

10

5632

112643

73.13 ms

oltp关双写

256

8

500W

10

5647

112959

86.00 ms

分布式文件系统指标

在计算存储分离架构下, 启用Atomic Write(关闭 DoubleWrite ), 10GB数据量, 因为大部分数据已经缓存到数据库 buffer cache 中, 所以在 IO 不是瓶颈的情况下:

○Sysbench指标, 提升不明显

■tps ↑0.2656%,qps ↑0.2797%,rst ↑14.9651%

○分布式文件系统指标

■Throughput 下降53%, 显著优化了网络带宽

测试结果 : 100GB数据量

Sysbench 指标

指标类型

线程个数

表数量

数据量

测试时长(分钟)

平均tps

平均qps

响应时间(95%)

oltp开双写

256

8

500W

10

2260

45202

227.40 ms

oltp关双写

256

8

500W

10

2519

50394

277.21 ms

分布式文件系统指标

在计算存储分离架构下, 启用Atomic Write(关闭 DoubleWrite ), 100GB数据量, 因为大部分数据无法缓存到数据库 buffer cache 中, 所以在 IO 是瓶颈的情况下:

○Sysbench指标, 提升明显

■TPS ↑28.0892%,QPS ↑28.0893%,RST ↓169.2033%

○分布式文件系统指标

■IOPS 提升22.3%

■Latency 下降 39%

■在IOPS 提升22.3%的情况下, Throughput 仅多消耗 3.6%

总结

想让数据库安全,高效的运行到 KubernetesDocker 的架构下并不容易, 本文分享的只是众多问题之一, 任重而道远..., 想在上面持续发力的同学, 自求多福吧.

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏更流畅、简洁的软件开发方式

【自然框架】 之 资源角色——列表过滤方案(思路篇)

名词解释 1、资源角色,我的理解就是资源过滤方案 + 角色。就是把资源过滤方案和角色结合在一起的东东。 2、资源:这里的资源指的是关系数据库里的记录。 3、资...

2005
来自专栏圣杰的专栏

性能优化知多少

1. 引言 最近一段时间,系统新版本要发布,在beta客户测试期间,暴露了很多问题,除了一些业务和异常问题外,其他都集中在性能上。有幸接触到这些性能调优的机会,...

2189
来自专栏杨建荣的学习笔记

多套Oracle 10g整合迁移到11g的方案

在数据迁移中,除了跨平台,全量,增量数据迁移之外,还有一类会把已有的难度升级,那就是整合式迁移,比如原来有两个数据,迁移后是一个,类似这样的需求,如果再加...

4083
来自专栏Java架构

阿里面试题一面:(电话面试:80分32秒)二面: (视频面试:47分钟)三面:(视频面试:22分钟)四面:(交叉面,电话面试:30分钟)

5.5K3
来自专栏申龙斌的程序人生

零基础学编程034:解决一个pandas问题

昨天一位朋友问了一个程序问题:一个csv电子表格文件,里面有不规范数据,如何用pandas的dataframe,将某一列是空值的记录行删掉。 收到了CSV文件,...

3667
来自专栏IT大咖说

容器化RDS|计算存储分离架构下的 IO 优化

摘要 在基于 Kubernetes 和 Docker 构建的私有 RDS 中,普遍采用了计算存储分离架构。该架构优势明显, 但对于数据库类 Latency Se...

3658
来自专栏BestSDK

Oculus 发布1.5.0版 SDK,新增 Touch 功能

1.5.0 版本 SDK 的发布主要是引入了新的 Touch 的功能,以及为静态层添加了压缩格式的支持。 新特性 · SDK现在可以检测到用户的拇指是否接触到T...

2418
来自专栏Samego开发资源

那个程序员的Linux常用软件清单

1.2K5
来自专栏hotqin888的专栏

推荐批量优化pdf文件的软件

http://www.pc6.com/softview/SoftView_14796.html

2492
来自专栏逸鹏说道

03.SQLServer性能优化之---存储优化系列

汇总篇:http://www.cnblogs.com/dunitian/p/4822808.html#tsql 概 述:http://www.cnblogs....

3085

扫码关注云+社区

领取腾讯云代金券