深度学习入行门槛太低,不开心!

安妮 问耕 编译整理 量子位 出品 | 公众号 QbitAI

进入门槛太低正在毁掉深度学习的名声!

这么一篇标题“忧心忡忡”的讨论帖,毫无意外的在reddit上炸了。为什么发起这么一个讨论?先看看原po主是怎么说的。

很长一段时间以来,我注意到很多自称深度学习专家、大咖的人,其实名不副实。这些人没有机器/深度学习的教育或者研究背景,只是装上TensorFlow运行了一些GitHub上搞来的代码,然后就自认专家,写博客、写教程、甚至出书。 这让我很困扰,这破坏了深度学习的名声。大多数公司不知道如何辨别这些所谓的“专家”,面试官也不懂深度学习,不在乎NIPS、ICML。所以当这些“专家”的深度学习解决方案不行时,这些公司就会认为一切只是一场炒作。 随着这种情况越来越多,持怀疑态度的人就越来越多,连内行都开始谈论泡沫了。大家怎么看这个问题?你们同意我的看法么?以后应该怎么办?

然而这个讨论,很快变成学术派工程派的争执……

不少人跟帖反对上面这个论点,核心思想可以大概总结为:多研究些问题,少谈些主义。量子位从中摘录部分观点,改写如下:

与po主的观点相反,开放性或者说“门槛低”是机器学习社群最好的部分之一。这个社群不会因为身份而把人拒之门外,对所有人都持欢迎态度。 大多数公司更需要的是工程师,而不是研究员。现在大部分工作都是基于标准技术,然后应用到特定的业务中。不用搞什么新研究。 根据我的经验,一个优秀的教授可以提供很多好主意,让20多个优秀的工程师忙碌起来。这个搭配是合适的。通常至少需要一个(可能也只需要一个)优秀的教授,以及一个聪明的工程师团队来支持他。 谁知道如何应用机器学习来解决业务需求?谁定义了模型的输入和输出?谁保证了数据的可用性?谁分析了结果?谁解决了问题? 如果是工程师完成了这一切,那就不是一个简简单单的工程师。你永远需要那些能够洞察业务需求,将其映射到正确的问题和答案上,并转化为可靠生产代码的人。 反对这种分类和对立。许多研究员也很擅长在现实世界中应用这些知识。不过有能力用机器学习来解决问题,和说自己的机器学习专家是完全不同的。 这个争论很大程度上,源于工程师缺乏必要的认可,导致一些人不得不“假装”成科学家。不往NIPS、ICML投论文,并不意味着他们不了解深度学习的基本原理。诚然,即使进入门槛比较低,仍然没有足够的深度学习工程师来满足需求。 这个领域急需有经验的机器学习工程师。

不是数量,而是质量

到底缺什么样的人?

Forrester研究公司近日调查显示,在2018年,科技公司还会为高质量软件人才涨薪,涨薪幅度高达20%。

程序员如此稀缺吗?不,是高质量的工程师达到了前所未有的稀缺。

在过去的几年中,软件工程师就是求职市场的香饽饽,是美国对就业最挑剔的一类人。大家普遍认为,在2018年这种就业形势不会变化。

来自Forrester研究公司的一份市场调查预测,在吸引重要数字人才方面落后的雇主会支付比高出市场20%的薪资招揽人才,尤其是在需求的技能方面。这些人才包括数据科学家、高级软件开发人员和信息安全分析师等。

软件工程人才短缺不是缺少自称为是“工程师”的人,而是缺乏有经验、高质量、对软件工程有深度理解的工程师。

这张美国地区科技人才的薪资统计图,或许可以窥见优质工程师的稀缺程度:

真正的“软件工程师”

只了解一种编程语言就是工程师啦?Naive,还差的远。就好比会说基本的西班牙语和优秀西班牙语老师之间的巨大差距。

在我看来,软件工程师是问题解决者,专门决计算机科学中系统应用上的各种问题。他们必须深度了解逻辑语法才能将想法转化成机器可理解的语言。

慢着,仅仅实现别人的想法还不够,工程师需要构建创新性的想法。此外,这些想法不仅仅需要在本地开发环境中运行,还需要在大型任务上表现良好。

受欢迎的软件工程师一定是个问题解决者,而不仅仅是码农(coders)

雇佣和教育挑战

高质量人才的稀缺有以下5个原因:

  • 缺乏经验
  • 缺少工作技巧/技术技巧
  • 求职者过于追求高薪
  • 缺乏软技能/工作能力
  • 缺乏正规的工程教育
到2022年,美国每年需要的专业人才和大学毕业生人数对比

从上图可以看到,计算机技术的相关职位空缺比授予学士学位的毕业生人数多的多。

现存挑战

猎头公司TekSystems的调查显示,70%的IT领袖表示他们的公司费尽心思想留住顶尖IT人才。为什么出现这种情况?IT人才为什么会频繁跳槽?可能有以下几点原因:

  • 公司没有为员工提供职业规划
  • 将软件工程视为一项基于任务的工作
  • 没有意识到留人的重要性
  • 项目停滞
  • 没有为员工提供足够的成长机会
  • 员工缺乏志同道合的同事

减轻人才短缺

强迫每个有潜力的工程师参加四年正规计算机科学培训不是一个现实的解决方案,也对人才短缺于事无补。虽然接受过正规理论教育是工作的基础,用基础知识解决问题的能力是通过项目经验和导师指导获得的。

学校教育和企业需求有条巨大的鸿沟不容忽视。现代技术栈非常复杂,包含了各种不同的框架、反应性经验(reactive experience)、AI、机器学习和集成测试等知识,这些知识在常规的高等教育中涉及很少,除非你找到在专门研究某一特定领域的项目。

“比如说,很多中小企业不会提供岗位培训,却要求员工旗开得胜,但帮助他们完成这些任务的技能是在学校里无法学到的。这不仅仅是美国面临的问题,是全球问题。”IT招聘公司Kyyba的国际工程师Ganesan表示。

需要软件工程师旗开得胜的公司就是加速高质量人才短缺和工资飙升的“罪魁祸首”

企业是时候应该注意人才定向定向培训问题了,他们可以通过一些尝试强化自己的工程人才库:

  • 招募可被引导和培养的可塑新兴人才,构建员工培训计划。
  • 为没有接受过正规培训的新兴人才提供教育激励机制。

也就是说,这里还存在一个更广泛的问题:即使岗位需要,但美国只有少数学生取得了计算机科学的学位。

授予计算机科学学士学位的人数

最后看一下中美人才数量对比,美国STEM专业(科学、技术、工程和数学)的应届毕业生在2016年有568000人。中国的人口大约是美国的四倍,但STEM毕业生数量是美国的9倍。

不同国家STEM应届毕业生人数对比

虽然中国的STEM毕业生占比远远大于美国,但毕业生的总体质量才是真正缓解人才短缺的因素。除此以外,缺乏培训计划、堆栈越来越复杂、不连贯的正规教育及缺乏解决问题的经验均为短缺的重要原因。

原文发布于微信公众号 - 量子位(QbitAI)

原文发表时间:2017-11-20

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏灯塔大数据

中国即将面临“大数据人才荒”

2016年9月,中国女排在里约奥运会上再次夺得世界冠军,举国欢庆。中国女排能够在极其艰难的情况下再次书写世界传奇,除了勇于拼搏的女排精神之外,科学的“数据分析...

1924
来自专栏AI科技评论

AI 真的会重蹈 O2O 的覆辙吗?

编者按:文中所有截图、评论之引用都已获得许可,并确保评论内容真实。 近日,奇虎 360 公司董事长兼 CEO 周鸿祎在 360 营销盛典上谈到了他对人工智能的看...

2874
来自专栏顶级程序员

驶向理想中的人工智能未来,见证人工智能各项落地实践

作为中国人工智能技术和产业领域规模最大、影响力最强的专业会议之一,2017全球人工智能技术大会汇聚了全球人工智能学术界和产业界著名学者、顶级专家和业界精英,在4...

3336
来自专栏人工智能快报

多家IT巨头公司就人工智能建立合作组织

全球IT产业的巨头谷歌、微软、IBM、脸书和亚马逊宣布就人工智能联合建立了一个非盈利性组织,其中谷歌子公司DeepMind以独立成员身份参与。 这个新成立的非盈...

3028
来自专栏大数据文摘

大悦城实践:大数据拯救传统零售业

2655
来自专栏AI科技评论

全面布局AI,IBM、Google是如何做的?

雷锋网按:本文摘选自长城证券报告——互联网迎来AI 时代,海外科技巨头争先布局:人工智能深度报告(国外篇一),在未改变原意的基础上略有删减。 PC互联网时代的企...

5317
来自专栏达观数据

AI上海创未来,2018长三角人工智能应用创新张江峰会圆满召开

1735
来自专栏IT派

解惑 | 深度学习入行门槛太低?

进入门槛太低正在毁掉深度学习的名声! 这么一篇标题“忧心忡忡”的讨论帖,毫无意外的在reddit上炸了。为什么发起这么一个讨论?先看看原po主是怎么说的。 很...

3625
来自专栏大数据文摘

院士谭铁牛:智能化时代生物识别的机遇与挑战(附报告全文)

2096
来自专栏量子位

大咖来信 | 李国杰院士:AI创业光靠算法走不远,警惕命运魔咒

李根 发自 凹非寺 量子位 报道 | 公众号 QbitAI AI对中国工程院院士、中科曙光董事长李国杰而言,并不是新事物。 作为中国最早一批计算机科学领域的专...

3525

扫码关注云+社区

领取腾讯云代金券