专栏首页量子位“爸爸,什么是机器学习呀?”

“爸爸,什么是机器学习呀?”

原作:Daniel Tunkelang 安妮 编译自 Quora 量子位 出品 | 公众号 QbitAI

爸爸,什么是机器学习呀?

难以回答!抓了抓开始脱发的脑壳,爸比还是被这个问题KO了。这个有些学术的问题,如何给孩子解答?

近日,计算机科学博士Daniel Tunkelang就在Quora上回答了这个问题——

不如我们由机器学习中的分类问题入手,教计算机学习哪些食物好吃,哪些难吃。

和人类不一样,计算机没有嘴巴,不能品尝食物。所以,我们需要用很多食物样例(标记的训练数据)教会计算机。这项样例中有美味的食物(正例),也有恶心的(负例)。对于每个被标记的示例,我们给计算机提供了描述食物(特征)的方法。

正例被标记为“美味”,比如巧克力冰淇淋、披萨、草莓等。负例被标记为“恶心”,比如凤尾鱼、花椰菜和球芽甘蓝。

在真正的机器学习系统中,你可能需要更多的训练数据,但3正3负的例子够我们了解概念了。

现在,我们需要一些特征。不妨就将这些样例设置为甜、咸和蔬菜三个特征,因为为二元特性,所以每种食物的每个特征都被赋予“是”或“否”的值。

有了这些训练数据后,计算机的工作就是从这些数据中总结一个公式(模型)。这样,当它会遇到新食物时,它能根据模型决定食物是美味还是恶心的。

一种模型是点系统(线性模型)。如果具备每个特性,就会得到一定分数(权重),如果不具备就没有分数。然后,模型将食物的点数加起来,得到最终分。

模型里有一个分界点,若得分高于分界点,模型就判定食物美味;如果分数低于分界点,就判定为难吃。

根据训练数据,模型中的特征分可能会被设置为甜3分,咸1分,松脆1分,蔬菜为-1分。则巧克力冰淇淋、披萨、草莓、凤尾鱼、花椰菜、和球芽甘蓝在模型中的得分如下:

权重让选择分界点更容易,因为正例都得分≥2,负例得分≤1。

总能正确找到权重和分界点不太容易。即使找到了,最终可能会得到一个只适用于这个训练数据的模型,但当我们用新例子时,模型效果就没这么好了(过度拟合)。

理想的模型不仅在训练数据中正确率高,在新例中仍然有效(泛化)。通常,简单模型比复杂模型(奥卡姆剃刀)更容易一般化。

我们可以不使用线性模型,构建决策树也是个好方法。在决策树中,只能问能用“是”和“否”回答的问题。

用训练数据让决策树答对并不难,在这个示例中训练数据是这样利用的:

这是蔬菜吗?

  • 如果是,则难吃。
  • 如果不是,那它是甜的吗?
    • 如果是,则好吃。
    • 如果不是,那它是松脆的吗?
      • 如果是,则好吃。
      • 如果不是,则难吃。

如同线性模型,我们需要担心过度拟合,不能让决策树太深。所以这意味着最终可能会有一个模型,虽然在我们的训练数据上会犯错,但能对新数据更好泛化。

希望孩子能听懂这个机器学习的解释~

最后,原文地址(请注意科学前往):

https://www.quora.com/How-do-you-explain-machine-learning-to-a-child/answer/Daniel-Tunkelang

本文分享自微信公众号 - 量子位(QbitAI),作者:专注报道AI

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-10-30

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 逆天语言模型GPT-2最新开源:345M预训练模型和1.5B参数都来了

    GPT-2,这个造假新闻编故事以假乱真,能完成阅读理解、常识推理、文字预测、文章总结等多种任务的AI模型,从诞生开始就引起大量关注。

    量子位
  • 一文看懂迁移学习:怎样用预训练模型搞定深度学习?

    瀚宸 编译自 Analytics Vidhya 量子位 出品 | 公众号 QbitAI 引言 跟传统的监督式机器学习算法相比,深度神经网络目前最大的劣势是什么?...

    量子位
  • 细思极恐!只需54块钱,你也能让AI伪造一系列联合国发言

    最近,有研究人员真就搞出了一个。手握这个生成器,你就可以无限生成逼真的联合国演讲风格的内容。

    量子位
  • PaddlePaddle重磅升级,Paddle Fluid v1.4版本发布

    继上个版本发布后,PaddlePaddle添加了很多新的特性和工具组件,目前已发展为集核心框架、工具组件和服务平台为一体的端到端开源深度学习平台。

    用户1386409
  • 深度学习在美团配送ETA预估中的探索与实践

    导读:ETA(预计送达时间预估)是配送调度环节中非常重要的一环,而且涉及的因素特别多。本文阐述了ETA深度学习技术迭代中的一些尝试及效果。

    数据猿
  • Diss所有深度生成模型,DeepMind说它们真的不知道到底不知道什么

    深度学习在应用层面获得了巨大成功,这些实际应用一般都希望利用判别模型构建条件分布 p(y|x),其中 y 是标签、x 是特征。但这些判别模型无法处理从其他分布中...

    机器之心
  • 我们建了个模型,搞定了 MNIST 数字识别任务

    对于图像分类任务,当前最先进的架构是卷积神经网络 (CNNs).。无论是面部识别、自动驾驶还是目标检测,CNN 得到广泛使用。在本文中,针对著名的 MNIST ...

    AI研习社
  • OpenAI提出能合成高清逼真图像的模型:“我们和GAN不一样!”

    这篇文章介绍了我们的新成果——Glow,这是一个可逆的生成模型,其中使用了可反复的1×1卷积网络。2015年,我们曾推出过NICE,它是一种针对复杂高维进行建模...

    崔庆才
  • 如何用神经网络“寻找威利”

    作者:Tadej Magajna 编译:Bing 《威利在哪里?》(Where’s Wally)是由英国插画家马丁·汉德福特(Martin Handford)创...

    企鹅号小编
  • 资源 | 小米开源移动端深度学习框架MACE:可转换TensorFlow模型

    文档地址:https://mace.readthedocs.io/en/latest/

    机器之心

扫码关注云+社区

领取腾讯云代金券