Java集合深度解析之Hashtable

Hashtable简介

Hashtable同样是基于哈希表实现的,同样每个元素是一个key-value对,其内部也是通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长。

Hashtable也是JDK1.0引入的类,是线程安全的,能用于多线程环境中

Hashtable同样实现了Serializable接口,它支持序列化,实现了Cloneable接口,能被克隆。

如果读者还没有学习java集合 不知集合的基础概念以及使用方法 小编搜集了一些集合的视频教学

地址:https://pan.baidu.com/s/1nxmmU85 密码:q7ce

如想获取更多学习资料 请点击: 1T 软件开发视频资源分享

Hashtable源码剖析

Hashtable的源码的很多实现都与HashMap差不多

传送门:Java集合深度解析之HashMap 对比学习效果更佳

Hashtable源码如下(加入了比较详细的注释):

package java.util;
import java.io.*;

public class Hashtable<K,V>
        extends Dictionary<K,V>
        implements Map<K,V>, Cloneable, java.io.Serializable {

    // 保存key-value的数组。
    // Hashtable同样采用单链表解决冲突,每一个Entry本质上是一个单向链表
    private transient Entry[] table;

    // Hashtable中键值对的数量
    private transient int count;

    // 阈值,用于判断是否需要调整Hashtable的容量(threshold = 容量*加载因子)
    private int threshold;

    // 加载因子
    private float loadFactor;

    // Hashtable被改变的次数,用于fail-fast机制的实现
    private transient int modCount = 0;

    // 序列版本号
    private static final long serialVersionUID = 1421746759512286392L;

    // 指定“容量大小”和“加载因子”的构造函数
    public Hashtable(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                    initialCapacity);
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal Load: "+loadFactor);

        if (initialCapacity==0)
            initialCapacity = 1;
        this.loadFactor = loadFactor;
        table = new Entry[initialCapacity];
        threshold = (int)(initialCapacity * loadFactor);
    }

    // 指定“容量大小”的构造函数
    public Hashtable(int initialCapacity) {
        this(initialCapacity, 0.75f);
    }

    // 默认构造函数。
    public Hashtable() {
        // 默认构造函数,指定的容量大小是11;加载因子是0.75
        this(11, 0.75f);
    }

    // 包含“子Map”的构造函数
    public Hashtable(Map t) {
        this(Math.max(2*t.size(), 11), 0.75f);
        // 将“子Map”的全部元素都添加到Hashtable中
        putAll(t);
    }

    public synchronized int size() {
        return count;
    }

    public synchronized boolean isEmpty() {
        return count == 0;
    }

    // 返回“所有key”的枚举对象
    public synchronized Enumerationkeys() {
        return this.getEnumeration(KEYS);
    }

    // 返回“所有value”的枚举对象
    public synchronized Enumerationelements() {
        return this.getEnumeration(VALUES);
    }

    // 判断Hashtable是否包含“值(value)”
    public synchronized boolean contains(Object value) {
        //注意,Hashtable中的value不能是null,
        // 若是null的话,抛出异常!
        if (value == null) {
            throw new NullPointerException();
        }

        // 从后向前遍历table数组中的元素(Entry)
        // 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于value
        Entry tab[] = table;
        for (int i = tab.length ; i-- > 0 ;) {
            for (Entrye = tab[i] ; e != null ; e = e.next) {
                if (e.value.equals(value)) {
                    return true;
                }
            }
        }
        return false;
    }

    public boolean containsValue(Object value) {
        return contains(value);
    }

    // 判断Hashtable是否包含key
    public synchronized boolean containsKey(Object key) {
        Entry tab[] = table;
        //计算hash值,直接用key的hashCode代替
        int hash = key.hashCode();
        // 计算在数组中的索引值
        int index = (hash & 0x7FFFFFFF) % tab.length;
        // 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
        for (Entrye = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                return true;
            }
        }
        return false;
    }

    // 返回key对应的value,没有的话返回null
    public synchronized V get(Object key) {
        Entry tab[] = table;
        int hash = key.hashCode();
        // 计算索引值,
        int index = (hash & 0x7FFFFFFF) % tab.length;
        // 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
        for (Entrye = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                return e.value;
            }
        }
        return null;
    }

    // 调整Hashtable的长度,将长度变成原来的2倍+1
    protected void rehash() {
        int oldCapacity = table.length;
        Entry[] oldMap = table;

        //创建新容量大小的Entry数组
        int newCapacity = oldCapacity * 2 + 1;
        Entry[] newMap = new Entry[newCapacity];

        modCount++;
        threshold = (int)(newCapacity * loadFactor);
        table = newMap;

        //将“旧的Hashtable”中的元素复制到“新的Hashtable”中
        for (int i = oldCapacity ; i-- > 0 ;) {
            for (Entryold = oldMap[i] ; old != null ; ) {
                Entrye = old;
                old = old.next;
                //重新计算index
                int index = (e.hash & 0x7FFFFFFF) % newCapacity;
                e.next = newMap[index];
                newMap[index] = e;
            }
        }
    }

    // 将“key-value”添加到Hashtable中
    public synchronized V put(K key, V value) {
        // Hashtable中不能插入value为null的元素!!!
        if (value == null) {
            throw new NullPointerException();
        }

        // 若“Hashtable中已存在键为key的键值对”,
        // 则用“新的value”替换“旧的value”
        Entry tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entrye = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                V old = e.value;
                e.value = value;
                return old;
            }
        }

        // 若“Hashtable中不存在键为key的键值对”,
        // 将“修改统计数”+1
        modCount++;
        //  若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子)
        //  则调整Hashtable的大小
        if (count >= threshold) {
            rehash();

            tab = table;
            index = (hash & 0x7FFFFFFF) % tab.length;
        }

        //将新的key-value对插入到tab[index]处(即链表的头结点)
        Entrye = tab[index];
        tab[index] = new Entry(hash, key, value, e);
        count++;
        return null;
    }

    // 删除Hashtable中键为key的元素
    public synchronized V remove(Object key) {
        Entry tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;

        //从table[index]链表中找出要删除的节点,并删除该节点。
        //因为是单链表,因此要保留带删节点的前一个节点,才能有效地删除节点
        for (Entrye = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                modCount++;
                if (prev != null) {
                    prev.next = e.next;
                } else {
                    tab[index] = e.next;
                }
                count--;
                V oldValue = e.value;
                e.value = null;
                return oldValue;
            }
        }
        return null;
    }

    // 将“Map(t)”的中全部元素逐一添加到Hashtable中
    public synchronized void putAll(Map t) {
        for (Map.Entry e : t.entrySet())
            put(e.getKey(), e.getValue());
    }

    // 清空Hashtable
    // 将Hashtable的table数组的值全部设为null
    public synchronized void clear() {
        Entry tab[] = table;
        modCount++;
        for (int index = tab.length; --index >= 0; )
            tab[index] = null;
        count = 0;
    }

    // 克隆一个Hashtable,并以Object的形式返回。
    public synchronized Object clone() {
        try {
            Hashtablet = (Hashtable) super.clone();
            t.table = new Entry[table.length];
            for (int i = table.length ; i-- > 0 ; ) {
                t.table[i] = (table[i] != null)
                        ? (Entry) table[i].clone() : null;
            }
            t.keySet = null;
            t.entrySet = null;
            t.values = null;
            t.modCount = 0;
            return t;
        } catch (CloneNotSupportedException e) {
            throw new InternalError();
        }
    }

    public synchronized String toString() {
        int max = size() - 1;
        if (max == -1)
            return "{}";

        StringBuilder sb = new StringBuilder();
        Iterator<Map.Entry> it = entrySet().iterator();

        sb.append('{');
        for (int i = 0; ; i++) {
            Map.Entrye = it.next();
            K key = e.getKey();
            V value = e.getValue();
            sb.append(key   == this ? "(this Map)" : key.toString());
            sb.append('=');
            sb.append(value == this ? "(this Map)" : value.toString());

            if (i == max)
                return sb.append('}').toString();
            sb.append(", ");
        }
    }

    // 获取Hashtable的枚举类对象
    // 若Hashtable的实际大小为0,则返回“空枚举类”对象;
    // 否则,返回正常的Enumerator的对象。
    private EnumerationgetEnumeration(int type) {
        if (count == 0) {
            return (Enumeration)emptyEnumerator;
        } else {
            return new Enumerator(type, false);
        }
    }

    // 获取Hashtable的迭代器
    // 若Hashtable的实际大小为0,则返回“空迭代器”对象;
    // 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)
    private IteratorgetIterator(int type) {
        if (count == 0) {
            return (Iterator) emptyIterator;
        } else {
            return new Enumerator(type, true);
        }
    }

    // Hashtable的“key的集合”。它是一个Set,没有重复元素
    private transient volatile SetkeySet = null;
    // Hashtable的“key-value的集合”。它是一个Set,没有重复元素
    private transient volatile Set<Map.Entry> entrySet = null;
    // Hashtable的“key-value的集合”。它是一个Collection,可以有重复元素
    private transient volatile Collectionvalues = null;

    // 返回一个被synchronizedSet封装后的KeySet对象
    // synchronizedSet封装的目的是对KeySet的所有方法都添加synchronized,实现多线程同步
    public SetkeySet() {
        if (keySet == null)
            keySet = Collections.synchronizedSet(new KeySet(), this);
        return keySet;
    }

    // Hashtable的Key的Set集合。
    // KeySet继承于AbstractSet,所以,KeySet中的元素没有重复的。
    private class KeySet extends AbstractSet<K> {
        public Iteratoriterator() {
            return getIterator(KEYS);
        }
        public int size() {
            return count;
        }
        public boolean contains(Object o) {
            return containsKey(o);
        }
        public boolean remove(Object o) {
            return Hashtable.this.remove(o) != null;
        }
        public void clear() {
            Hashtable.this.clear();
        }
    }

    // 返回一个被synchronizedSet封装后的EntrySet对象
    // synchronizedSet封装的目的是对EntrySet的所有方法都添加synchronized,实现多线程同步
    public Set<Map.Entry> entrySet() {
        if (entrySet==null)
            entrySet = Collections.synchronizedSet(new EntrySet(), this);
        return entrySet;
    }

    // Hashtable的Entry的Set集合。
    // EntrySet继承于AbstractSet,所以,EntrySet中的元素没有重复的。
    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public Iterator<Map.Entry> iterator() {
            return getIterator(ENTRIES);
        }

        public boolean add(Map.Entryo) {
            return super.add(o);
        }

        // 查找EntrySet中是否包含Object(0)
        // 首先,在table中找到o对应的Entry链表
        // 然后,查找Entry链表中是否存在Object
        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry entry = (Map.Entry)o;
            Object key = entry.getKey();
            Entry[] tab = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;

            for (Entry e = tab[index]; e != null; e = e.next)
                if (e.hash==hash && e.equals(entry))
                    return true;
            return false;
        }

        // 删除元素Object(0)
        // 首先,在table中找到o对应的Entry链表
        // 然后,删除链表中的元素Object
        public boolean remove(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entryentry = (Map.Entry) o;
            K key = entry.getKey();
            Entry[] tab = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;

            for (Entrye = tab[index], prev = null; e != null;
                 prev = e, e = e.next) {
                if (e.hash==hash && e.equals(entry)) {
                    modCount++;
                    if (prev != null)
                        prev.next = e.next;
                    else
                        tab[index] = e.next;

                    count--;
                    e.value = null;
                    return true;
                }
            }
            return false;
        }

        public int size() {
            return count;
        }

        public void clear() {
            Hashtable.this.clear();
        }
    }

    // 返回一个被synchronizedCollection封装后的ValueCollection对象
    // synchronizedCollection封装的目的是对ValueCollection的所有方法都添加synchronized,实现多线程同步
    public Collectionvalues() {
        if (values==null)
            values = Collections.synchronizedCollection(new ValueCollection(),
                    this);
        return values;
    }

    // Hashtable的value的Collection集合。
    // ValueCollection继承于AbstractCollection,所以,ValueCollection中的元素可以重复的。
    private class ValueCollection extends AbstractCollection<V> {
        public Iteratoriterator() {
            return getIterator(VALUES);
        }
        public int size() {
            return count;
        }
        public boolean contains(Object o) {
            return containsValue(o);
        }
        public void clear() {
            Hashtable.this.clear();
        }
    }

    // 重新equals()函数
    // 若两个Hashtable的所有key-value键值对都相等,则判断它们两个相等
    public synchronized boolean equals(Object o) {
        if (o == this)
            return true;

        if (!(o instanceof Map))
            return false;
        Mapt = (Map) o;
        if (t.size() != size())
            return false;

        try {
            // 通过迭代器依次取出当前Hashtable的key-value键值对
            // 并判断该键值对,存在于Hashtable中。
            // 若不存在,则立即返回false;否则,遍历完“当前Hashtable”并返回true。
            Iterator<Map.Entry> i = entrySet().iterator();
            while (i.hasNext()) {
                Map.Entrye = i.next();
                K key = e.getKey();
                V value = e.getValue();
                if (value == null) {
                    if (!(t.get(key)==null && t.containsKey(key)))
                        return false;
                } else {
                    if (!value.equals(t.get(key)))
                        return false;
                }
            }
        } catch (ClassCastException unused)   {
            return false;
        } catch (NullPointerException unused) {
            return false;
        }

        return true;
    }

    // 计算Entry的hashCode
    // 若 Hashtable的实际大小为0 或者 加载因子<0,则返回0。
    // 否则,返回“Hashtable中的每个Entry的key和value的异或值 的总和”。
    public synchronized int hashCode() {
        int h = 0;
        if (count == 0 || loadFactor < 0)
            return h;  // Returns zero

        loadFactor = -loadFactor;  // Mark hashCode computation in progress
        Entry[] tab = table;
        for (int i = 0; i < tab.length; i++)
            for (Entry e = tab[i]; e != null; e = e.next)
                h += e.key.hashCode() ^ e.value.hashCode();
        loadFactor = -loadFactor;  // Mark hashCode computation complete

        return h;
    }

    // java.io.Serializable的写入函数
    // 将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中
    private synchronized void writeObject(java.io.ObjectOutputStream s)
            throws IOException
    {
        // Write out the length, threshold, loadfactor
        s.defaultWriteObject();

        // Write out length, count of elements and then the key/value objects
        s.writeInt(table.length);
        s.writeInt(count);
        for (int index = table.length-1; index >= 0; index--) {
            Entry entry = table[index];

            while (entry != null) {
                s.writeObject(entry.key);
                s.writeObject(entry.value);
                entry = entry.next;
            }
        }
    }

    // java.io.Serializable的读取函数:根据写入方式读出
    // 将Hashtable的“总的容量,实际容量,所有的Entry”依次读出
    private void readObject(java.io.ObjectInputStream s)
            throws IOException, ClassNotFoundException
    {
        // Read in the length, threshold, and loadfactor
        s.defaultReadObject();

        // Read the original length of the array and number of elements
        int origlength = s.readInt();
        int elements = s.readInt();

        // Compute new size with a bit of room 5% to grow but
        // no larger than the original size.  Make the length
        // odd if it's large enough, this helps distribute the entries.
        // Guard against the length ending up zero, that's not valid.
        int length = (int)(elements * loadFactor) + (elements / 20) + 3;
        if (length > elements && (length & 1) == 0)
            length--;
        if (origlength > 0 && length > origlength)
            length = origlength;

        Entry[] table = new Entry[length];
        count = 0;

        // Read the number of elements and then all the key/value objects
        for (; elements > 0; elements--) {
            K key = (K)s.readObject();
            V value = (V)s.readObject();
            // synch could be eliminated for performance
            reconstitutionPut(table, key, value);
        }
        this.table = table;
    }

    private void reconstitutionPut(Entry[] tab, K key, V value)
            throws StreamCorruptedException
    {
        if (value == null) {
            throw new java.io.StreamCorruptedException();
        }
        // Makes sure the key is not already in the hashtable.
        // This should not happen in deserialized version.
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entrye = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                throw new java.io.StreamCorruptedException();
            }
        }
        // Creates the new entry.
        Entrye = tab[index];
        tab[index] = new Entry(hash, key, value, e);
        count++;
    }

    // Hashtable的Entry节点,它本质上是一个单向链表。
    // 也因此,我们才能推断出Hashtable是由拉链法实现的散列表
    private static class Entry<K,V> implements Map.Entry<K,V> {
        // 哈希值
        int hash;
        K key;
        V value;
        // 指向的下一个Entry,即链表的下一个节点
        Entrynext;

        // 构造函数
        protected Entry(int hash, K key, V value, Entrynext) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        protected Object clone() {
            return new Entry(hash, key, value,
                    (next==null ? null : (Entry) next.clone()));
        }

        public K getKey() {
            return key;
        }

        public V getValue() {
            return value;
        }

        // 设置value。若value是null,则抛出异常。
        public V setValue(V value) {
            if (value == null)
                throw new NullPointerException();

            V oldValue = this.value;
            this.value = value;
            return oldValue;
        }

        // 覆盖equals()方法,判断两个Entry是否相等。
        // 若两个Entry的key和value都相等,则认为它们相等。
        public boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry)o;

            return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&
                    (value==null ? e.getValue()==null : value.equals(e.getValue()));
        }

        public int hashCode() {
            return hash ^ (value==null ? 0 : value.hashCode());
        }

        public String toString() {
            return key.toString()+"="+value.toString();
        }
    }

    private static final int KEYS = 0;
    private static final int VALUES = 1;
    private static final int ENTRIES = 2;

    // Enumerator的作用是提供了“通过elements()遍历Hashtable的接口” 和 “通过entrySet()遍历Hashtable的接口”。
    private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
        // 指向Hashtable的table
        Entry[] table = Hashtable.this.table;
        // Hashtable的总的大小
        int index = table.length;
        Entryentry = null;
        EntrylastReturned = null;
        int type;

        // Enumerator是 “迭代器(Iterator)” 还是 “枚举类(Enumeration)”的标志
        // iterator为true,表示它是迭代器;否则,是枚举类。
        boolean iterator;

        // 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。
        protected int expectedModCount = modCount;

        Enumerator(int type, boolean iterator) {
            this.type = type;
            this.iterator = iterator;
        }

        // 从遍历table的数组的末尾向前查找,直到找到不为null的Entry。
        public boolean hasMoreElements() {
            Entrye = entry;
            int i = index;
            Entry[] t = table;
                /* Use locals for faster loop iteration */
            while (e == null && i > 0) {
                e = t[--i];
            }
            entry = e;
            index = i;
            return e != null;
        }

        // 获取下一个元素
        // 注意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方式”
        // 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。
        // 然后,依次向后遍历单向链表Entry。
        public T nextElement() {
            Entryet = entry;
            int i = index;
            Entry[] t = table;
                /* Use locals for faster loop iteration */
            while (et == null && i > 0) {
                et = t[--i];
            }
            entry = et;
            index = i;
            if (et != null) {
                Entrye = lastReturned = entry;
                entry = e.next;
                return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
            }
            throw new NoSuchElementException("Hashtable Enumerator");
        }

        // 迭代器Iterator的判断是否存在下一个元素
        // 实际上,它是调用的hasMoreElements()
        public boolean hasNext() {
            return hasMoreElements();
        }

        // 迭代器获取下一个元素
        // 实际上,它是调用的nextElement()
        public T next() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            return nextElement();
        }

        // 迭代器的remove()接口。
        // 首先,它在table数组中找出要删除元素所在的Entry,
        // 然后,删除单向链表Entry中的元素。
        public void remove() {
            if (!iterator)
                throw new UnsupportedOperationException();
            if (lastReturned == null)
                throw new IllegalStateException("Hashtable Enumerator");
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();

            synchronized(Hashtable.this) {
                Entry[] tab = Hashtable.this.table;
                int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;

                for (Entrye = tab[index], prev = null; e != null;
                     prev = e, e = e.next) {
                    if (e == lastReturned) {
                        modCount++;
                        expectedModCount++;
                        if (prev == null)
                            tab[index] = e.next;
                        else
                            prev.next = e.next;
                        count--;
                        lastReturned = null;
                        return;
                    }
                }
                throw new ConcurrentModificationException();
            }
        }
    }


    private static Enumeration emptyEnumerator = new EmptyEnumerator();
    private static Iterator emptyIterator = new EmptyIterator();

    // 空枚举类
    // 当Hashtable的实际大小为0;此时,又要通过Enumeration遍历Hashtable时,返回的是“空枚举类”的对象。
    private static class EmptyEnumerator implements Enumeration<Object> {

        EmptyEnumerator() {
        }

        // 空枚举类的hasMoreElements() 始终返回false
        public boolean hasMoreElements() {
            return false;
        }

        // 空枚举类的nextElement() 抛出异常
        public Object nextElement() {
            throw new NoSuchElementException("Hashtable Enumerator");
        }
    }


    // 空迭代器
    // 当Hashtable的实际大小为0;此时,又要通过迭代器遍历Hashtable时,返回的是“空迭代器”的对象。
    private static class EmptyIterator implements Iterator<Object> {

        EmptyIterator() {
        }

        public boolean hasNext() {
            return false;
        }

        public Object next() {
            throw new NoSuchElementException("Hashtable Iterator");
        }

        public void remove() {
            throw new IllegalStateException("Hashtable Iterator");
        }

    }
}

几点总结

针对Hashtable,我们同样给出几点比较重要的总结,但要结合与HashMap的比较来总结。

1、二者的存储结构和解决冲突的方法都是相同的。

2、HashTable在不指定容量的情况下的默认容量为11,而HashMap为16,Hashtable不要求底层数组的容量一定要为2的整数次幂,而HashMap则要求一定为2的整数次幂。

3、Hashtable中key和value都不允许为null,而HashMap中key和value都允许为null(key只能有一个为null,而value则可以有多个为null)。但是如果在Hashtable中有类似put(null,null)的操作,编译同样可以通过,因为key和value都是Object类型,但运行时会抛出NullPointerException异常,这是JDK的规范规定的。

我们来看下ContainsKey方法和ContainsValue的源码:

    // 判断Hashtable是否包含“值(value)”    
     public synchronized boolean contains(Object value) {    
         //注意,Hashtable中的value不能是null,    
         // 若是null的话,抛出异常!    
         if (value == null) {    
             throw new NullPointerException();    
         }    

         // 从后向前遍历table数组中的元素(Entry)    
         // 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于value    
         Entry tab[] = table;    
         for (int i = tab.length ; i-- > 0 ;) {    
             for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {    
                 if (e.value.equals(value)) {    
                     return true;    
                 }    
             }    
         }    
         return false;    
     }    

     public boolean containsValue(Object value) {    
         return contains(value);    
     }    

     // 判断Hashtable是否包含key    
     public synchronized boolean containsKey(Object key) {    
         Entry tab[] = table;    
    /计算hash值,直接用key的hashCode代替  
         int hash = key.hashCode();      
         // 计算在数组中的索引值   
         int index = (hash & 0x7FFFFFFF) % tab.length;    
         // 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素    
         for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {    
             if ((e.hash == hash) && e.key.equals(key)) {    
                 return true;    
             }    
         }    
         return false;    
     }    

很明显,如果value为null,会直接抛出NullPointerException异常,但源码中并没有对key是否为null判断,有点小不解!不过NullPointerException属于RuntimeException异常,是可以由JVM自动抛出的,也许对key的值在JVM中有所限制吧。

4、Hashtable扩容时,将容量变为原来的2倍加1,而HashMap扩容时,将容量变为原来的2倍。

5、Hashtable计算hash值,直接用key的hashCode(),而HashMap重新计算了key的hash值,Hashtable在求hash值对应的位置索引时,用取模运算,而HashMap在求位置索引时,则用与运算,且这里一般先用hash&0x7FFFFFFF后,再对length取模,&0x7FFFFFFF的目的是为了将负的hash值转化为正值,因为hash值有可能为负数,而&0x7FFFFFFF后,只有符号外改变,而后面的位都不变。

原文发布于微信公众号 - 互扯程序(chat_routine)

原文发表时间:2018-01-29

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏猿人谷

二叉搜索树的后序遍历序列

题目:输入一个整数数组,判断该数组是不是某二元查找树的后序遍历的结果。如果是返回true,否则返回false。 例如输入5、7、6、9、11、10、8,由于这一...

21270
来自专栏cmazxiaoma的架构师之路

通过分析LinkedHashMap了解LRU

我们都知道LRU是最近最少使用,根据数据的历史访问记录来进行淘汰数据的。其核心思想是如果数据最近被访问过,那么将来访问的几率也更高。在这里提一下,Redis缓存...

16830
来自专栏LeetCode

LeetCode 46 & 47. Permutations I&II

Given a collection of distinct integers, return all possible permutations.

29600
来自专栏来自地球男人的部落格

[LeetCode] 78. Subsets

【原题】 Given a set of distinct integers, nums, return all possible subsets. Not...

28490
来自专栏Java爬坑系列

【Java入门提高篇】Day28 Java容器类详解(十)LinkedHashMap详解

  今天来介绍一下容器类中的另一个哈希表———》LinkedHashMap。这是HashMap的关门弟子,直接继承了HashMap的衣钵,所以拥有HashMap...

9220
来自专栏开发之途

Java集合框架源码解析之HashSet

12840
来自专栏武培轩的专栏

Java中Set集合是如何实现添加元素保证不重复的?

Java中Set集合是如何实现添加元素保证不重复的? Set集合是一个无序的不可以重复的集合。今天来看一下为什么不可以重复。 Set是一个接口,最常用的实现类就...

40670
来自专栏格子的个人博客

Java源码阅读之TreeMap(红黑树) - JDK1.8

TreeMap实现了NavigableMap接口, 而NavigableMap则是通过sortedMap间接继承了Map接口,它定义了一系列导航方法,这些Map...

37430
来自专栏Code_iOS

数据结构:集合

工程代码 Github: Data_Structures_C_Implemention -- Set

33030
来自专栏10km的专栏

jface databinding:List,Set,Map对象的Observable代理封装

需求描述 对于一个已经存在的集合/映射对象(普通的List,Set,Map,非observable),我们希望把将它转换成一个observable对象,这个ob...

22160

扫码关注云+社区

领取腾讯云代金券