破解黑盒?谷歌让你理解机器如何“思考”

AiTechYun

编辑:xiaoshan

在2015年,谷歌曾尝试去想象神经网络如何理解产生了迷幻图像的图像。不久之后,谷歌把其代码开源为“DeepDream”,它发展成为一个小型的艺术运动,产生各种神奇的东西。但谷歌也继续了DeepDream背后的研究,试图解决深度学习中最令人兴奋的问题之一:神经网络是如何做到这样的?

  • DeepDream地址:https://research.googleblog.com/2015/07/deepdream-code-example-for-visualizing.html

去年,在网络期刊《Distill》中,谷歌演示了这些相同的技术如何在网络中展示单个神经元的功能,而不是像DeepDream一样“对网络感兴趣”。这让谷歌的技术人员可以看到网络中央的神经元是如何检测各种事物的——按钮、布片、建筑物——以及如何在网络层上建立起越来越复杂的结构。

GoogLeNet中神经元的可视化。更高层次的神经元代表更高层次的思想。

虽然可视化神经元是令人兴奋的,但谷歌却忽略了一些重要的事情:这些神经元是如何连接到设神经网络的实际操作呢?

今天,谷歌发布了“The Building Blocks of Interpretability”,这是一篇全新的文章,探讨了特征可视化如何与其他解释性技术结合在一起,以了解神经网络如何做出决策。谷歌证明了这些组合可以让谷歌“站在神经网络的角度”,并理解在这一点上做出的一些决定,以及它们如何影响最终的输出。例如,谷歌技术人员可以看到神经网络如何检测到一个毛茸茸的耳朵,然后增加了图像是“拉布拉多寻回犬”或“小猎犬”的概率。

谷歌探索了解神经元在网络中激活的技术。正常情况下,如果问哪些神经元被激活,就会得到一些毫无意义的东西,比如“神经元538被触发了”,这对专家来说并不是很有帮助。谷歌技术通过给每个神经元添加视觉效果,使其对人类更有意义,因此谷歌技术人员可以看到像“毛茸茸的耳朵探测器被激活”之类的东西。这是一种神经网络的核磁共振成像。

谷歌的该项技术还可以缩小和显示整个图像是如何在不同的层“感知”的。这能够让技术人员真正看到从网络中检测到的非常简单的边缘组合,到丰富的纹理和三维结构,到高级结构如耳朵,鼻子,头部和腿的过渡。

这些见解本身令人兴奋,但是当谷歌将它们与神经网络的最终决策联系起来时,它们变得更加令人兴奋。因此,最终不仅可以看到神经网络检测到的毛茸茸的耳朵,也可以看到如何增加图像是拉布拉多寻回犬的可能性。

除了论文,谷歌还发布了Lucid,这是一个建立在DeepDream工作之上的神经网络可视化库。它使你能够制作上面看到的排序清晰的特征可视化图像,以及更多具有艺术性的DeepDream图像。

  • Lucid地址:https://github.com/tensorflow/lucid

谷歌还发布了colab notebooks。它使得利用Lucid在谷歌文章中重现可视化变得非常简单!只需打开笔记本,点击一个按钮即可运行代码 – 无需安装!

  • colab notebooks地址:https://github.com/tensorflow/lucid#notebooks

在colab notebooks中,你可以单击一个按钮来运行代码,并查看下面的结果。

这项工作仅仅触及了谷歌认为可以构建的用于理解神经网络的接口的表面。

原文发布于微信公众号 - ATYUN订阅号(atyun_com)

原文发表时间:2018-03-07

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏量子位

周星驰的睡梦罗汉拳心法,现在AI也学会了:梦中“修炼”,醒来“实战”

刚刚,两位人工智能界的大牛:Google Brain团队的David Ha(从高盛董事总经理任上转投AI研究),瑞士AI实验室的Jürgen Schmidhub...

1213
来自专栏CSDN技术头条

深度学习成长的烦恼

本文为CSDN原创编译文章,禁止转载。 【编者按】深度学习尽管对当前人工智能的发展作用很大,然而深度学习工作者并非一帆风顺。Chris Edwards发表于Co...

1836
来自专栏数据科学与人工智能

GitHub 上 57 款最流行的开源深度学习项目

本文整理了 GitHub 上最流行的 57 款深度学习项目(按 stars 排名)。最后更新:2016.08.09 1.TensorFlow 使用数据流图计算可...

3655
来自专栏AI研习社

5 年提速 500 倍,英伟达 GPU 创纪录突破与技术有哪些?

AI 研习社按,2017 年 5 月,在 GTC 2017 上,英伟达 CEO 黄仁勋发布 Volta 架构 Tesla V100,它被称为史上最快 GPU 加...

1084
来自专栏新智元

AI距离匹敌人类大脑还有多远?人工神经网络和生物神经网络最详细对比

【新智元导读】 人工神经网络性能的好坏取决于哪些要素?取得了哪些进展,最新发展趋势是什么?通过与生物神经网络的对比,本文带来对人工神经网络的深度介绍。 能够学...

3536
来自专栏灯塔大数据

每周学点大数据 | No.6算法的分析之易解问题和难解问题

No.6期 算法的分析之易解问题和难解问题 小可:嗯,我懂了。可是您前面说现在的计算机在模型上都可以称作图灵机,这个要如何理解呢? Mr. 王:你能思考这个问...

2797
来自专栏ATYUN订阅号

MIT新AI模型揭开黑匣子:使用透明的、类似人类的推理解决问题

如果向孩子呈现各种形状的图片,并要求他们找到大的红色圆圈,为了得出答案,可能经历几个推理步骤:首先,找到所有大的东西;接下来,找到大的红色的形状;最后,挑选出一...

1084
来自专栏钱塘大数据

一文看懂数据可视化:从编程工具到可视化表现方式

新媒体管家 说到可视化,就不得不说一下大数据,毕竟可视化是解决大数据的一种高效的手段,而如今人人都在谈论大数据,大数据 ≠ 有数据 ≠ 数据量大, 离谱的是,如...

42210
来自专栏ATYUN订阅号

谷歌MnasNet:实现移动端机器学习模型的自动化

在智能手机领域,检测对象,分类图像和识别面部的应用程序并不是什么新鲜事;它们已经被Google Lens和Snapchat等应用推广,但普遍性无法替代质量,而大...

883
来自专栏数据派THU

当你的深度学习模型走进死胡同,问问自己这5个问题

来源:量子位 编译:安妮 本文长度为2509字,建议阅读4分钟 本文为你介绍深度学习中应该思考的5个问题。 深度学习是一项庞大又复杂的工程,在建立深度学习模型时...

1939

扫码关注云+社区

领取腾讯云代金券