大型网站的架构设计图分享-转

近段时间以来,通过接触有关海量数据处理和搜索引擎的诸多技术,常常见识到不少精妙绝伦的架构图。除了每每感叹于每幅图表面上的绘制的精细之外,更为架构图背后所隐藏的设计思想所叹服。个人这两天一直在搜集各大型网站的架构设计图,一为了一饱眼福,领略各类大型网站架构设计的精彩之外,二来也可供闲时反复琢磨体会,何乐而不为呢?特此,总结整理了诸如国外wikipedia,Facebook,Yahoo!,YouTube,MySpace,Twitter,国内如优酷网等大型网站的技术架构(本文重点分析优酷网的技术架构),以飨读者。

本文着重凸显每一幅图的精彩之处与其背后含义,而图的说明性文字则从简从略。ok,好好享受此番架构盛宴吧。当然,若有任何建议或问题,欢迎不吝指正。谢谢。

1、WikiPedia 技术架构

  1. 来自wikipedia的数据:峰值每秒钟3万个 HTTP 请求 每秒钟 3Gbit流量, 近乎375MB 350 台 PC 服务器。
  2. GeoDNSA :40-line patch for BIND to add geographical filters support to the existent views in BIND", 把用户带到最近的服务器。GeoDNS 在 WikiPedia 架构中担当重任当然是由 WikiPedia 的内容性质决定的--面向各个国家,各个地域。
  3. 负载均衡:LVS,请看下图:

2、Facebook 架构

Facebook 搜索功能的架构示意图

细心的读者一定能发现,上副架构图之前出现在此文之中:从几幅架构图中偷得半点海里数据处理经验。本文与前文最大的不同是,前文只有几幅,此文系列将有上百幅架构图,任您尽情观赏。

  • 4、twitter技术架构

twitter的整体架构设计图

twitter平台大致由twitter.com、手机以及第三方应用构成,如下图所示(其中流量主要以手机和第三方为主要来源):

缓存在大型web项目中起到了举足轻重的作用,毕竟数据越靠近CPU存取速度越快。下图是twitter的缓存架构图:

关于缓存系统,还可以看看下幅图:

  • 6、Amazon技术架构

Amazon的Dynamo Key-Value存储架构图

可能有读者并不熟悉Amazon,它现在已经是全球商品品种最多的网上零售商和全球第2大互联网公司。而之前它仅仅是一个小小的网上书店。ok,下面,咱们来见识下它的架构。

Dynamo是亚马逊的key-value模式的存储平台,可用性和扩展性都很好,性能也不错:读写访问中99.9%的响应时间都在300ms内。按分布式系统常用的哈希算法切分数据,分放在不同的node上。Read操作时,也是根据key的哈希值寻找对应的node。Dynamo使用了 Consistent Hashing算法,node对应的不再是一个确定的hash值,而是一个hash值范围,key的hash值落在这个范围内,则顺时针沿ring找,碰到的第一个node即为所需。

Dynamo对Consistent Hashing算法的改进在于:它放在环上作为一个node的是一组机器(而不是memcached把一台机器作为node),这一组机器是通过同步机制保证数据一致的。

下图是分布式存储系统的示意图,读者可观摩之:

Amazon的云架构图如下:

Amazon的云架构图

  • 7、优酷网的技术架构

从一开始,优酷网就自建了一套CMS来解决前端的页面显示,各个模块之间分离得比较恰当,前端可扩展性很好,UI的分离,让开发与维护变得十分简单和灵活,下图是优酷前端的模块调用关系:

这样,就根据module、method及params来确定调用相对独立的模块,显得非常简洁。下图是优酷的前端局部架构图:

优酷的数据库架构也是经历了许多波折,从一开始的单台MySQL服务器(Just Running)到简单的MySQL主从复制、SSD优化、垂直分库、水平sharding分库。

  1. 简单的MySQL主从复制。 MySQL的主从复制解决了数据库的读写分离,并很好的提升了读的性能,其原来图如下:

但是,主从复制也带来其他一系列性能瓶颈问题: 那问题产生总得解决的,这就产生下面的优化方案。

  1. 写入无法扩展
  2. 写入无法缓存
  3. 复制延时
  4. 锁表率上升
  5. 表变大,缓存率下降

  1. MySQL垂直分区 如果把业务切割得足够独立,那把不同业务的数据放到不同的数据库服务器将是一个不错的方案,而且万一其中一个业务崩溃了也不会影响其他业务的正常进行,并且也起到了负载分流的作用,大大提升了数据库的吞吐能力。经过垂直分区后的数据库架构图如下:

然而,尽管业务之间已经足够独立了,但是有些业务之间或多或少总会有点联系,如用户,基本上都会和每个业务相关联,况且这种分区方式,也不能解决单张表数据量暴涨的问题,因此为何不试试水平sharding呢?

  1. MySQL水平分片(Sharding) 这是一个非常好的思路,将用户按一定规则(按id哈希)分组,并把该组用户的数据存储到一个数据库分片中,即一个sharding,这样随着用户数量的增加,只要简单地配置一台服务器即可,原理图如下:

如何来确定某个用户所在的shard呢,可以建一张用户和shard对应的数据表,每次请求先从这张表找用户的shard id,再从对应shard中查询相关数据,如下图所示:

但是,优酷是如何解决跨shard的查询呢,这个是个难点,据介绍优酷是尽量不跨shard查询,实在不行通过多维分片索引、分布式搜索引擎,下策是分布式数据库查询(这个非常麻烦而且耗性能)。

  1. 缓存策略 貌似大的系统都对“缓存”情有独钟,从http缓存到memcached内存数据缓存,但优酷表示没有用内存缓存,理由如下: 而且Squid 的 write() 用户进程空间有消耗,Lighttpd 1.5 的 AIO(异步I/O) 读取文件到用户内存导致效率也比较低下。 但为何我们访问优酷会如此流畅,与土豆相比优酷的视频加载速度略胜一筹?这个要归功于优酷建立的比较完善的内容分发网络(CDN),它通过多种方式保证分布在全国各地的用户进行就近访问——用户点击视频请求后,优酷网将根据用户所处地区位置,将离用户最近、服务状况最好的视频服务器地址传送给用户,从而保证用户可以得到快速的视频体验。这就是CDN带来的优势,就近访问。
    1. 避免内存拷贝,避免内存锁
    2. 如接到老大哥通知要把某个视频撤下来,如果在缓存里是比较麻烦的

原文发布于微信公众号 - Golang语言社区(Golangweb)

原文发表时间:2017-09-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏程序人生 阅读快乐

UNIX 环境高级编程(第3版 )

《UNIX环境高级编程(第3版)》是被誉为UNIX编程“圣经”的Advanced Programming in the UNIX Environment一书的第...

15120
来自专栏python3

python简介

1.系统编程:提供API(Application Programming Interface,应用程序编程接口),能方便地进行系统维护和管理,Linux下标志性...

14820
来自专栏我爱编程

经济学人文章爬虫

假如是经常阅读该网站文章自然是订阅支持一下更好,但假如只是偶尔想看几篇文章订阅的性价比就不高了。

23710
来自专栏TEG云端专业号的专栏

「TEG+系列」破局者 - 腾讯金融级数据库TDSQL

一 背景 金融行业的数据库市场,尤其是银行的核心交易系统,一直是Oracle、DB2这类传统商业数据库的天下,但是: 2014年,微众银行选用TDSQL作为其核...

43250
来自专栏马哥教育

学不好Linux?我们分析看看正确的学习方法是什么-马哥教育

2018年里,Linux运维的职位数量和平均薪资水平仍然持续了去年的强劲增幅,比很多开发岗位涨的都快。从研究机构的数据来看,Linux职位数量和工资水平涨幅均在...

40160
来自专栏Java帮帮-微信公众号-技术文章全总结

面试重要知识点复习大纲

面试重要知识点复习大纲 一、Java基础部分 (搞定所有技术之后才考虑复习的技术点) 1.数组中的排序问题(笔试或者机试,前者可能性更大) 2...

29940
来自专栏CSDN技术头条

Facebook:如何让应用适合所有系统、带宽以及屏幕

如果你的移动应用程序只能在某个地区(比如US)运行良好,那么该如何改善?在@scale conference上,Facebook多次谈及了这个问题。那么如何才能...

21490
来自专栏程序你好

设计数据库:7件你不想做的事情

嗯,我关心糟糕的设计,因为我通常承担着让查询运行得很快并克服糟糕设计的限制的重担。作为一名数据专业人员,在过去的15年里,我见证了(并构建了)我的数据库设计分享...

14360
来自专栏马哥教育

初学者怎么快速掌握Linux运维?

2018年里,Linux运维的职位数量和平均薪资水平仍然持续了去年的强劲增幅,比很多开发岗位涨的都快。从研究机构的数据来看,Linux职位数量和工资水平涨幅均...

48240
来自专栏北京马哥教育

新手程序员必须要知道的10个秘密

初出茅庐的你带着仍残留墨香的毕业证书踏上工作岗位,马上就被书上没写的规则和各种繁杂的日常事务来了个下马威。这样的故事实在是司空见惯,编程工作也不例外。 没有几个...

36950

扫码关注云+社区

领取腾讯云代金券