前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >自动驾驶汽车到底涉及了哪些技术?

自动驾驶汽车到底涉及了哪些技术?

作者头像
量子位
发布2018-03-27 16:02:28
7700
发布2018-03-27 16:02:28
举报
文章被收录于专栏:量子位
作者:陈光 上汽集团 | 高精度地图&环境建模工程师 量子位 已获授权编辑发布

Google从2009年开始做自动驾驶,到现在已有8个年头。8个年头的技术积累还无法将自动驾驶技术量产落地,可见自动驾驶技术并不简单。

自动驾驶是一个庞大而且复杂的工程,涉及的技术很多,大部分答主仅从软件方面进行了介绍,而且太过细致。我从硬件软件两方面谈一谈自动驾驶汽车所涉及的技术。

一. 硬件

离开硬件谈自动驾驶都是耍流氓。

先看个图,下图基本包含了自动驾驶研究所需要的各种硬件。

然而…

这么多传感器并不一定会同时出现在一辆车上。某种传感器存在与否,取决于这辆车需要完成什么样的任务。如果只需要完成高速公路的自动驾驶,类似Tesla 的 AutoPilot 功能,那根本不需要使用到激光传感器;如果你需要完成城区路段的自动驾驶,没有激光传感器,仅靠视觉是很困难的。

自动驾驶系统工程师要以任务为导向,进行硬件的选择和成本控制

1.汽车

既然要做自动驾驶,汽车当然是必不可少的东西。

从我司做自动驾驶的经验来看,做开发时,能不选纯汽油车就别选

一方面是整个自动驾驶系统所消耗的电量巨大,混动和纯电动在这方面具有明显优势。另一方面是是发动机的底层控制算法相比于电机复杂太多,与其花大量时间在标定和调试底层上,不如直接选用电动车研究更高层的算法。

国内也有媒体专门就测试车辆的选择做过调研。

调研文章地址:

http://www.sohu.com/a/139046349_120865

2.控制器

在前期算法预研阶段,推荐使用工控机(Industrial PC,IPC)作为最直接的控制器解决方案。因为工控机相比于嵌入式设备更稳定、可靠,社区支持及配套的软件也更丰富。 百度开源的Apollo推荐了一款包含GPU的工控机,型号为Nuvo-5095GC,如下图。

当算法研究得较为成熟时,就可以将嵌入式系统作为控制器,比如Audi和TTTech共同研发的zFAS,目前已经应用在最新款Audi A8上量产车上了。

3.CAN卡

工控机与汽车底盘的交互必须通过专门的语言——CAN。从底盘获取当前车速及方向盘转角等信息,需要解析底盘发到CAN总线上的数据;工控机通过传感器的信息计算得到方向盘转角以及期望车速后,也要通过 CAN卡 将消息转码成底盘可以识别的信号,底盘进而做出响应。

CAN卡可以直接安装在工控机中,然后通过外部接口与CAN总线相连。

Apollo使用的CAN卡,型号为ESD CAN-PCIe/402,如下图。

4.全球定位系统(GPS)+惯性测量单元(IMU)

人类开车,从A点到B点,需要知道A点到B点的地图,以及自己当前所处的位置,这样才能知道行驶到下一个路口是右转还是直行。

无人驾驶系统也一样,依靠GPS+IMU就可以知道自己在哪(经纬度),在朝哪个方向开(航向),当然IMU还能提供诸如横摆角速度、角加速度等更丰富的信息,这些信息有助于自动驾驶汽车的定位和决策控制。

Apollo的GPS型号为NovAtel GPS-703-GGG-HV,IMU型号为NovAtel SPAN-IGM-A1

5.感知传感器

相信大家对车载传感器都耳熟能详了。

感知传感器分为很多种,包括视觉传感器、激光传感器、雷达传感器等。

视觉传感器就是摄像头,摄像头分为单目视觉,双目(立体)视觉。比较知名的视觉传感器提供商有以色列的Mobileye,加拿大的PointGrey,德国的Pike等。

激光传感器分为单线,多线一直到64线。每多一线,成本上涨1万RMB,当然相应的检测效果也更好。比较知名的激光传感器提供商有美国的VelodyneQuanergy,德国的Ibeo等。国内有速腾聚创禾赛科技

雷达传感器是车厂Tier1的强项,因为雷达传感器已经在汽车上得到了广泛使用。知名的供应商当然是博世、德尔福、电装等。

6.硬件部分总结

组装一套可以完成某项功能的自动驾驶系统需要及其丰富的经验,并且要对各传感器的性能边界及控制器计算能力了如指掌。优秀的系统工程师能在满足功能的要求下将成本控制在最低,使其量产、落地的可能性更大。

二. 软件

大部分答主已对软件进行了阐述,我也从我的角度介绍以下软件的开发。

软件部分的内容已在我的回答:无人驾驶,个人如何研究? 中进行了介绍。

《无人驾驶,个人如何研究?》文章链接:

https://www.zhihu.com/question/20210846/answer/215490332

以下内容前半段为搬运。

软件包含四层:感知、融合、决策、控制。

各个层级之间都需要编写代码,去实现信息的转化,更细化的分类如下。

1.采集

传感器跟我们的PC或者嵌入式模块通信时,会有不同的传输方式。

比如我们采集来自摄像机的图像信息,有的是通过千兆网卡实现的通信,也有的是直接通过视频线进行通信的。再比如某些毫米波雷达是通过CAN总线给下游发送信息的,因此我们必须编写解析CAN信息的代码。

不同的传输介质,需要使用不同的协议去解析这些信息,这就是上文提到的“驱动层”。

通俗地讲就是把传感器采集到的信息全部拿到,并且编码成团队可以使用的数据。

2.预处理

传感器的信息拿到后会发现不是所有信息都是有用的。

传感器层将数据以一帧一帧、固定频率发送给下游,但下游是无法拿每一帧的数据去进行决策或者融合的。为什么?

因为传感器的状态不是100%有效的,如果仅根据某一帧的信号去判定前方是否有障碍物(有可能是传感器误检了),对下游决策来说是极不负责任的。因此上游需要对信息做预处理,以保证车辆前方的障碍物在时间维度上是一直存在的,而不是一闪而过。

这里就会使用到智能驾驶领域经常使用到的一个算法——卡尔曼滤波。

3.坐标转换

坐标转换在智能驾驶领域十分重要。

传感器是安装在不同地方的,比如超声波雷达(上图中橘黄色小区域)是布置在车辆周围的;当车辆右方有一个障碍物,距离这个超声波雷达有3米,那么我们就认为这个障碍物距离车有3米吗?

并不一定!因为决策控制层做车辆运动规划时,是在车体坐标系下做的(车体坐标系一般以后轴中心为O点),所以最终所有传感器的信息,都是需要转移到自车坐标系下的。

因此感知层拿到3m的障碍物位置信息后,必须将该障碍物的位置信息转移到自车坐标系下,才能供规划决策使用。

同理,摄像机一般安装在挡风玻璃下面,拿到的数据也是基于摄像机坐标系的,给下游的数据,同样需要转换到自车坐标系下。

什么是自车坐标系?

请拿出你的右手,以大拇指 → 食指 → 中指 的顺序开始念 X、Y、Z。

然后把手握成如下形状:

把三个轴的交点(食指根部)放在自车坐标系后轴中心,Z轴指向车顶,X轴指向车辆前进方向。

各个团队可能定义的坐标系方向不一致,只要开发团队内部统一即可。

4.信息融合

信息融合是指把相同属性的信息进行多合一操作。

比如摄像机检测到了车辆正前方有一个障碍物,毫米波也检测到车辆前方有一个障碍物,激光雷达也检测到前方有一个障碍物,而实际上前方只有一个障碍物,所以我们要做的是把多传感器下这辆车的信息进行一次融合,以此告诉下游,前面有一辆车,而不是三辆车。

5.决策规划

这一层次主要设计的是拿到融合数据后,如何正确做规划。规划包含纵向控制和横向控制。

纵向控制即速度控制,表现为 什么时候加速,什么时候制动。

横向控制即行为控制,表现为 什么时候换道,什么时候超车等

6.软件长什么样子?

自动驾驶系统中的部分软件看起来和下面类似。

软件的名字反映了该软件的实际作用——

app_driver_camera 摄像机驱动

app_driver_hdmap 高精度地图驱动

app_driver_ins 惯导驱动

app_driver_lidar 激光传感器驱动

app_driver_mwr 毫米波传感器驱动

app_fusion_freespace 自由行驶区域融合

app_fusion_lane 车道线融合

app_fusion_obstacle 障碍物融合

app_planning&decision 规划决策

然而实际上攻城狮们会编写一些其他软件用于自己的调试工作,比如记录数据和回放数据的工具。

还有用于传感器信息显示的可视化程序,类似下图的效果。


本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-09-05,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 量子位 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一. 硬件
    • 1.汽车
      • 2.控制器
        • 3.CAN卡
          • 4.全球定位系统(GPS)+惯性测量单元(IMU)
            • 5.感知传感器
              • 6.硬件部分总结
              • 二. 软件
                • 1.采集
                  • 2.预处理
                    • 3.坐标转换
                      • 4.信息融合
                        • 5.决策规划
                          • 6.软件长什么样子?
                          相关产品与服务
                          GPU 云服务器
                          GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
                          领券
                          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档