高清不卡!MIT用机器学习让你更流畅的观看在线视频

问耕 编译整理 量子位 出品 | 公众号 QbitAI

摔!在线视频看到关键时刻,突然卡住了!

你遇到过这样的情况么?有时候是卡住了,有时候是画质猛降。出现这种情况,因为现在的算法把视频分解为小块,边播放边加载。如果网速不过给力,视频网站就会尝试降低分辨率,更严重的情况就是卡顿(等缓冲)。

比方YouTube就用了这种自适应比特率(ABR)算法。不过,问题在于很多用户不会从头到尾看完视频,所以有非常多的缓冲数据都被浪费了。

另外,由于需要在视频质量和缓冲频率之间做出平衡,Netflix和YouTube等视频网站渐渐变得不能满足用户的观看期望。视频质量不佳,用户就会走掉,这会进一步影响广告收入。因此,视频网站必须找到创新的方法。

麻省理工学院(MIT)的Mohammad Alizadeh教授,和他在人工智能实验室(CSAIL)的团队为此研发出一套新的AI系统:Pensieve。

这套系统使用机器学习的方法,根据不同的网络条件,选择不同的算法。Pensieve被证明可以比现有的系统提供更高质量的视频观看体验。实验数据表明,Pensieve可以减少10-30%的缓冲,而用户体验的评分要高出10-25%。

Pensieve可以根据网络条件进行调整。比如,一位地铁上的用户即将进入没有网络的区域时,会自动降低视频的码率,以便提前加载足够的视频,这样即便没有网络支持,用户也能不间断的继续观看视频。

“我们的系统在优化方面非常灵活”,博士生Hongzi Mao表示,这套系统可以个性化订制视频体验,比方是否让缓冲的优先级高于画质。Mao也是此次研究论文的第一作者,同时署名的还包括Alizadeh和博士生Ravi Netravali。

这篇论文将在下周的SIGCOMM会议上发表,代码也将开源。

一般来说,ABR有两种算法:基于码率的算法,会根据网速传输数据;基于缓冲的算法,会保证总有一定的数据处于被缓冲状态。

这两种算法的限制在于,他们没有同时兼顾网速和缓冲。因此,这些算法时常会产生比较差的比特率决策,并且依赖人工专家进行仔细的调整。

也有研究人员试图将这两种方法进行结合,CMU的学者就开发出模型预测控制(MPC)系统,这个方法通过预测环境如何随时间变化来优化决策。这是一个重大的提升,但仍然受困于网速等难以建模的因素。

(插播:MPC的介绍可以查看网页 https://users.ece.cmu.edu/~vsekar/mpcdash.html)

而这次提出的Pensieve把ABR算法变成一个神经网络,而且在各种不同的缓冲和网速条件下进行了测试。

这套系统通过奖励和惩罚系统调整算法。研究表明,刚开始看视频时,用户更容易接受缓冲,所以可以据此调整奖惩系统。

目前Pensieve仅仅基于一个月的下载视频进行了训练,Alizadeh表示如果有更多Netflix或者YouTube的数据,这套系统的效果会更好。

接下来,这个团队会在VR场景下测试Pensieve。“4K画质的VR视频,所需要要的码率可能轻松达到数百兆比特每秒,而今天的网络根本无法支持”,Alizadeh说。

原文发布于微信公众号 - 量子位(QbitAI)

原文发表时间:2017-08-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器人网

15 个顶级的人工智能开源工具

它是由贾扬清在加州大学伯克利分校的读博时创造的,Caffe 是一个基于表达体系结构和可扩展代码的深度学习框架。使它声名鹊起的是它的速度,这让它受到研究人员和企...

13820
来自专栏ATYUN订阅号

MIT开发AI系统,确定新闻来源是否有政治偏见以打击假新闻

虚假消息仍然是令人头疼的问题。今年3月,有一半的美国人报告在新闻网站上故意误导文章。最近爱德曼调查的大多数受访者表示,他们无法判断媒体报道的真实性。鉴于假新闻的...

14560
来自专栏量子位

干货警告!476个PyTorch资源大合集推荐,GitHub超过3600星

最近,GitHub的“趋势”版块出现了一份PyTorch资源,内容从库到教程再到论文实现,应用尽有,质量贼高。

9620
来自专栏吉浦迅科技

英伟达DesignWorks VR用虚拟现实做现实世界的设计

英伟达(NVIDIA)发布了DesignWorks VR,一套新的工具配合之前推出的GameWorks VR SDK一起使用,聚焦代替在虚拟现实里创建物理对象。...

29160
来自专栏机器人网

机器人的“大脑”:机器人控制技术有多重要?

机器人学代表了当今集成度高、具有代表性的高技术领域,它综合了多门学科。其中包括机械工程学、计算机技术、控制工程学、电子学、生物学等多学科的交叉与融合,体现了当今...

33650
来自专栏PPV课数据科学社区

关联分析案例:一套数据学会如何从数据到信息到决策

俗话说,忘记历史就是背叛自己,今天这篇用此做开场再合适不过。 这一篇将根据一个虚拟的故事,来介绍如何通过历史数据来帮助一个销售人员发现规律信息从而辅助他来做一些...

46340
来自专栏AI研习社

想快速部署机器学习项目?来看看几大主流机器学习服务平台对比吧

日前,kdnuggets 上的一篇文章对比了三大公司(谷歌、微软和亚马逊)提供的机器学习服务平台,对于想要启动机器学习项目的公司或是数据科学新手来说,提供了非常...

588170
来自专栏专知

势头强劲: PyTorch周年大事记盘点

【导读】 1月19日,PyTorch团队对PyTorch发布一年来的成长轨迹做了总结。在过去一年里,PyTorch资源包的下载量超50万次、PyTorch频频出...

37450
来自专栏BestSDK

5个要点,决定你的交互设计是否成功!

交互设计(Interaction Design):定义、设计人造系统的行为的设计领域。人造物,即人工制成物品,例如,软件、移动设备、人造环境、服务、可佩带装置以...

36270
来自专栏帮你学MatLab

《如何高效学习》读书笔记整理

书里讲的方法叫做——整体性学习 书中认为,整体性学习和机械学习本质上的目标都是实现信息的储存与提取,两者的区别在于如何实现储存与提取信息上。 机械记忆就是反复记...

36370

扫码关注云+社区

领取腾讯云代金券