机器学习入门知识体系

IT派 - {技术青年圈}

持续关注互联网、大数据、人工智能领域

随着2016年Alpha Go在围棋击败李世石,2017年初卡内基梅隆大学人工智能系统Libratus在长达20天的鏖战中,打败4名世界顶级德州扑克玩家,这标志着人工智能技术又达到了一个新的高峰。人工智能已经不再是在各大公司幕后提供各种智能推荐、语音识别算法的工具,它已经慢慢走向台前进入到平常百姓的视野之中。曾经有人描述人工智能就向一列缓缓开向人们的火车,一开始非常遥远而且看起来非常缓慢,它慢慢接近,直到人们清楚看到它的时候,它已经呼啸而过,把人远远抛在身后。现在似乎就是人们可以远远看到人工智能的时候,它已经发展数十年,但直到最近才引起广泛注意,随着大数据的积累、算法的改进、硬件的提升,人工智能可以在很多细分的领域成为专家,辅助人类甚至超过人类。

作为一名初学者,我也是刚刚接触人工智能和机器学习,希望能够和大家共同学习。接触一个领域的第一步是尽快的了解全貌并且搭建出相应的知识体系。大致提纲如下(后续不断补充):

1 - 数学

线性代数、微积分

在整个机器学习过程中涉及大量矩阵运算和微积分导数的概念,因此建议初学者至少要有较为扎实的数学基础,对矩阵和微积分的概念了解比较清楚。否则在一些公式推导过程中会遇到较大障碍,而不断反复回来复习数学知识。

2 - 编程语言

Python/R/Java/Matlab 7 Steps to Mastering Machine Learning With Python(http://www.kdnuggets.com/2015/11/seven-steps-machine-learning-python.html)

Python已经成为机器学习的第一语言,至于为什么知乎(https://www.zhihu.com/question/30105838?sort=created)中有非常不错的解释。众多机器学习的框架都支持Python API,所以学习机器学习,Python语言语法估计是绕不过去。

3 - Supervise learning

Linear regression:机器学习知识体系 - 线性回归(http://www.cnblogs.com/wdsunny/p/6362582.html)

Logistic regression: 机器学习知识体系 - 逻辑回归(http://www.cnblogs.com/wdsunny/p/6369916.html)

Neural network:机器学习知识体系 - 神经网络(基础)(http://www.cnblogs.com/wdsunny/p/6399572.html) 机器学习知识体系 - 神经网络(反向传播算法)(http://www.cnblogs.com/wdsunny/p/6399623.html)

SVM:SVM支持向量机(http://mp.weixin.qq.com/s/Uha_MJQtJiWRhBuVW32y9g) SVM支持向量机(http://www.jianshu.com/p/e22381cc2e38) SVM - Understanding the math(http://www.svm-tutorial.com/2014/11/svm-understanding-math-part-1/)

监督学习指的是人们给机器一大堆标记好的数据,比如一大堆照片,标记出哪些是猫的照片,哪些不是,然后让机器自己学习归纳出算法,可以判断出其他照片是否是猫。目前这个领域算法代表:Linear regression, Logistic regression, Neural network, SVM等等。

4 - Unsupervise learning

K-means:深入浅出K-Means算法(http://www.csdn.net/article/2012-07-03/2807073-k-means)

PCA:主成份分析算法 PCA(http://blog.kamidox.com/pca.html)

Anomaly detection:异常检测(http://blog.kamidox.com/gaussian-distribution.html)

非监督学习指的就是人们给机器一大堆没有标记的数据,让机器可以对数据进行分类、检测异常等。

5 - Special topic

Recommend system

Large scale machine learning application

一些特殊算法,例如推荐系统。常用于购物网站,可以根据你的过往购物或评分情况,来向你推荐商品。

6 - Advice on machine learning

Bias/vairance:Understanding the Bias-Variance Tradeoff(http://scott.fortmann-roe.com/docs/BiasVariance.html)

Regulation

Learning curve

Error analysis:Accurately Measuring Model Prediction Error(http://scott.fortmann-roe.com/docs/MeasuringError.html)

Celling analysis

机器学习的建议,包含参数正则化、学习曲线、错误分析、调参等。

7 - Deep Learning

Neural Netwotk

深度学习是近期机器学习的一个热门分支,模拟人类大脑的思维方式,可以极大的提高正确率,是近来机器学习的一个非常大的突破。

CNN:卷积神经网络全面解析(http://www.moonshile.com/post/juan-ji-shen-jing-wang-luo-quan-mian-jie-xi) 零基础入门深度学习(4) - 卷积神经网络(https://zybuluo.com/hanbingtao/note/485480)

8 - Tools/Framework

TensorFlow/Theano/Keras

很多大厂就开源了一些机器学习的框架,基于这些框架可以很容易搭建机器学习的平台。

TensorFlow and Deep Learning without a PhD, Part 1(https://www.youtube.com/watch?v=u4alGiomYP4)

TensorFlow and Deep Learning without a PhD, Part 2(https://www.youtube.com/watch?v=fTUwdXUFfI8)

推荐的学习资料:

Github上面有一份非常详尽的学习路径(https://github.com/JustFollowUs/Machine-Learning) awesome-deep-learning(https://github.com/ChristosChristofidis/awesome-deep-learning)

我个人推荐的几个经典资料:

机器学习

Andrew NG的Coursera的机器学习入门(https://www.coursera.org/learn/machine-learning):这个教程非常适合初学者,没有很高深的数学推导,Andrew也是业内大牛但非常谦逊,讲解非常浅显易懂。

Neural Networks for Machine Learning(https://class.coursera.org/neuralnets-2012-001) by Geoffrey Hinton in Coursera (2012)

周志华的机器学习(https://book.douban.com/subject/26708119/):号称最好的中文机器学习入门,这里有对这本书的详细评价(https://www.zhihu.com/question/39945249)。

几本经典著作:An Introduction to Statistical Learning(http://www-bcf.usc.edu/~gareth/ISL/),Pattern Recognition and Machine Learning(https://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738/ref=pd_sim_14_1?ie=UTF8&dpID=61f0EXfMRvL&dpSrc=sims&preST=_AC_UL160_SR118%2C160_&refRID=119X50P5F0DFA339S9DR),The Elements of Statistical Learning(https://www.amazon.com/The-Elements-Statistical-Learning-Prediction/dp/0387848576/ref=pd_sim_14_2?ie=UTF8&dpID=41LeU3HcBdL&dpSrc=sims&preST=_AC_UL160_SR103%2C160_&refRID=119X50P5F0DFA339S9DR)

深度学习

Neural Networks and Deep Learning(http://neuralnetworksanddeeplearning.com/index.html):Michael Nielsen(http://michaelnielsen.org/)用非常浅显易懂的方式介绍了神经网络和深度学习,并且提供了一个手写数字识别的例子,非常适合入门。

UFLDL Tutorial I(http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial) UFLDL Tutorial II(http://ufldl.stanford.edu/tutorial/):Andrew NG主导的Deep Learning的学习资料,内容非常精炼,适合稍微有些基础的同学。

Deep Learning(http://www.deeplearningbook.org/):几位大神共同编写的关于深度学习的free book。

零基础入门深度学习(https://zybuluo.com/hanbingtao/note/433855):一位大神写的关于深度学习的入门教程,由浅入深的详细介绍了深度学习的几个重要内容,非常适合入门的学习。

Convolutional Neural Networks for Visual Recognition - Stanford(http://vision.stanford.edu/teaching/cs231n/syllabus_winter2015.html) by Fei-Fei Li, Andrej Karpathy (2015)

Convolutional Neural Networks for Visual Recognition - Stanford(http://vision.stanford.edu/teaching/cs231n/syllabus.html) by Fei-Fei Li, Andrej Karpathy (2016)

Deep Learning Course(https://www.college-de-france.fr/site/en-yann-lecun/course-2015-2016.htm) by Yann LeCun (2016)

从人工智能到机器学习,再到最近大热的深度学习,人们已经在这个领域研究了数十年,现在虽然取得一定的突破,但是离真正的人工智能还有非常长的距离。而且人工智能一定要跳出学术界的研究框架,结合工业界的应用,从2016年可以看到大量的实际应用场景,例如自动驾驶、Apple Siri、Amazon Echo、谷歌翻译等等,我相信未来人工智能领域极有可能成为下一代颠覆性的技术革命。

原文发布于微信公众号 - IT派(it_pai)

原文发表时间:2018-01-07

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI研习社

【教程】深度学习全网最全学习资料汇总之入门篇

【AI研习社】关注AI前沿、开发技巧及技术教程等方面的内容。欢迎技术开发类文章、视频教程等内容投稿,邮件发送至:zhangxian@leiphone.com ...

4786
来自专栏新智元

机器学习里,数学究竟多重要?

【新智元导读】本文的主要目的是提供资源,给出有关机器学习所需的数学上面的建议。数学初学者无需沮丧,因为初学机器学习,并不需要先学好大量的数学知识才能开始。正如这...

41610
来自专栏京东技术

JDAI-Face | 新型人脸属性识别系统技术解析

人可以轻易理解所看到的视觉信息,但将同样的能力赋予计算机,并让其代替人类来进行类脑思考,是人工智能学术界、产业界争相研究的科学课题。人脸作为最重要的生物特征,蕴...

3843
来自专栏大数据文摘

擂台:灵异视频辨真伪

27615
来自专栏EAWorld

拥抱人工智能,从机器学习开始

自“阿尔法狗”(AlphaGo)完胜人类围棋顶尖高手后,有关人工智能(AI)的讨论就从未停歇。工业4.0方兴未艾,人工智能引领的工业5.0时代却已悄然苏醒。人工...

1423
来自专栏机器之心

CVPR 2017 李飞飞总结 8 年 ImageNet 历史,宣布挑战赛最终归于 Kaggle

机器之心报道 参与:机器之心编辑部 2017 年 7 月 18 日,ImageNet 最后一届挑战赛成绩已经公布,多个国内院校和企业在各个比赛项目上取得了非常不...

3665
来自专栏目标检测和深度学习

深度学习简述

作为人工智能领域里最热门的概念,深度学习会在未来对我们的生活产生显著的影响,或许现在已经是了,从 AlphaGo 到 iPhone X 上的人脸识别(FaceI...

3036
来自专栏机器之心

从Pix2Code到CycleGAN:2017年深度学习重大研究进展全解读

42312
来自专栏机器之心

地平线机器人杨铭:深度神经网络在图像识别应用中的演化

机器之心整理 编辑:杜雪 4 月 15 日,杨铭博士在机器之心线下活动 Interface 上做了一次题为「深度神经网络在图像识别应用中的演化」的演讲。这篇文章...

4486
来自专栏大数据挖掘DT机器学习

机器学习知识体系

随着2016年Alpha Go在围棋击败李世石,2017年初卡内基梅隆大学人工智能系统Libratus在长达20天的鏖战中,打败4名世界顶级德州扑克玩家,这标志...

42011

扫码关注云+社区

领取腾讯云代金券