首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >TensorFlow实现卷积神经网络

TensorFlow实现卷积神经网络

作者头像
用户1220053
发布2018-03-29 12:12:38
5660
发布2018-03-29 12:12:38
举报
文章被收录于专栏:DT乱“码”DT乱“码”

1.卷积神经网络简介 卷积神经网络(convolutional neural network, CNN),最早是19世纪60年代,生物学家对猫视觉皮层研究发现:每个视觉神经元只会处理一小块区域是视觉图像,即感受野。后来到了80年代,日本科学家提出了神经认知机(Neocognitron)的概念,也可以算作是卷积神经网络最初的实现原型,在CS231n的课上说过,卷积神经网络不是一夜产生的,从这个发展过程中我们就可以看出,确实是这样的。卷积神经网络的要点就是局部连接(Local Connection)、权值共享(Weight sharing)和池化层(Pooling)中的降采样(Down-Sampling)。  2.简单神经网络的搭建 这里就使用了两个卷积层和一个全连接层,目的主要是说明下在tensorflow中怎么定义卷积层和全连接层。

#第一步,很简单,导入MNIST数据集,创建默认的Interactive Session
from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf


mnist = input_data.read_data_sets("MNIST_data", one_hot = True)
sess = tf.InteractiveSession()
#定义权重和偏差的初始化函数,这样省得后来一遍遍定义,直接调用初始化函数就可以了。
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev = 0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape = shape)
    return tf.Variable(initial)
#定义卷积层和池化层
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides = [1, 1, 1, 1], padding = 'SAME')

def max_pool_2_2(x):
    return tf.nn.max_pool(x, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME')

'''
定义输入的placeholder,x是特征,y_是真实的label。因为卷积神经网络是会用到2D的空间信息,
所以要把784维的数据恢复成28*28的结构,使用的函数就是tf.shape的函数。
'''
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])

#第一个卷积神经
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2_2(h_conv1)

#第二个卷积神经
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2_2(h_conv2)

#定义第一个全连接层
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

#最后一个输出层也要对权重和偏差进行初始化。
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

#定义损失函数和训练的步骤,使用Adam优化器最小化损失函数。
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices = [1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

#计算预测的精确度。
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

'''
对全局的变量进行初始化,迭代20000次训练,使用的minibatch为50,所以总共训练的样本数量为100万。
'''
tf.global_variables_initializer().run()
for i in range(20000):
    batch = mnist.train.next_batch(50)
    if i % 100 == 0:
        train_accuracy = accuracy.eval(feed_dict = {x: batch[0], y_: batch[1], keep_prob: 1.0})
        print("step %d, training accuracy %g"%(i, train_accuracy))
    train_step.run(feed_dict = {x: batch[0], y_: batch[1], keep_prob: 0.5})

#输出最后的准确率。
print("test accuracy %g"%accuracy.eval(feed_dict = {x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档