使用Hive SQL插入动态分区的Parquet表OOM异常分析

温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。 Fayson的github:https://github.com/fayson/cdhproject 提示:代码块部分可以左右滑动查看噢

1.异常描述


当运行“INSERT ... SELECT”语句向Parquet或者ORC格式的表中插入数据时,如果启用了动态分区,你可能会碰到以下错误,而导致作业无法正常执行。

Hive客户端:

Task with the most failures(4):
Diagnostic Messages for this Task:
Error: GC overhead limit exceeded
...
FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.mr.MapRedTask
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 HDFS Read: 0 HDFS Write: 0 FAIL
Total MapReduce CPU Time Spent: 0 msec

(可左右滑动)

YARN的8088中查看具体map task报错:

2017-10-27 17:08:04,317 FATAL [main] org.apache.hadoop.mapred.YarnChild: Error running child : java.lang.OutOfMemoryError: GC overhead limit exceeded

(可左右滑动)

2.异常分析


Parquet和ORC是列式批处理文件格式。这些格式要求在写入文件之前将批次的行(batches of rows)缓存在内存中。在执行INSERT语句时,动态分区目前的实现是:至少为每个动态分区目录打开一个文件写入器(file writer)。由于这些缓冲区是按分区维护的,因此在运行时所需的内存量随着分区数量的增加而增加。所以经常会导致mappers或reducers的OOM,具体取决于打开的文件写入器(file writer)的数量。

通过INSERT语句插入数据到动态分区表中,也可能会超过HDFS同时打开文件数的限制。

如果没有join或聚合,INSERT ... SELECT语句会被转换为只有map任务的作业。mapper任务会读取输入记录然后将它们发送到目标分区目录。在这种情况下,每个mapper必须为遇到的每个动态分区创建一个新的文件写入器(file writer)。mapper在运行时所需的内存量随着它遇到的分区数量的增加而增加。

3.异常重现与解决

3.1.生成动态分区的几个参数说明


hive.exec.dynamic.partition

默认值:false

是否开启动态分区功能,默认false关闭。

使用动态分区时候,该参数必须设置成true;

hive.exec.dynamic.partition.mode

默认值:strict

动态分区的模式,默认strict,表示必须指定至少一个分区为静态分区,nonstrict模式表示允许所有的分区字段都可以使用动态分区。

一般需要设置为nonstrict

hive.exec.max.dynamic.partitions.pernode

默认值:100

在每个执行MR的节点上,最大可以创建多少个动态分区。

该参数需要根据实际的数据来设定。

比如:源数据中包含了一年的数据,即day字段有365个值,那么该参数就需要设置成大于365,如果使用默认值100,则会报错。

hive.exec.max.dynamic.partitions

默认值:1000

在所有执行MR的节点上,最大一共可以创建多少个动态分区。

同上参数解释。

hive.exec.max.created.files

默认值:100000

整个MR Job中,最大可以创建多少个HDFS文件。

一般默认值足够了,除非你的数据量非常大,需要创建的文件数大于100000,可根据实际情况加以调整。

mapreduce.map.memory.mb

map任务的物理内存分配值,常见设置为1GB,2GB,4GB等。

mapreduce.map.java.opts

map任务的Java堆栈大小设置,一般设置为小于等于上面那个值的75%,这样可以保证map任务有足够的堆栈外内存空间。

mapreduce.input.fileinputformat.split.maxsize

mapreduce.input.fileinputformat.split.minsize

这个两个参数联合起来用,主要是为了方便控制mapreduce的map数量。比如我设置为1073741824,就是为了让每个map处理1GB的文件。

3.2.一个例子


Fayson在前两天给人调一个使用Hive SQL插入动态分区的Parquet表时,总是报错OOM,也是折腾了很久。以下我们来看看整个过程。

1.首先我们看看执行脚本的内容,基本其实就是使用Hive的insert语句将文本数据表插入到另外一张parquet表中,当然使用了动态分区。

2.我们看看原始数据文件,是文本文件,一共120个,每个30GB大小,总共差不多3.6TB。

3.我们看看报错

4.因为是一个只有map的mapreduce任务,当我们从YARN的8088观察这个作业时可以发现,基本没有一个map能够执行成功,全部都是失败的。报上面的错误。

5.把mapreduce.map.memory.mb从2GB增大到4GB,8GB,16GB,相应mapreduce.map.java.opts增大到3GB,6GB,12GB。依旧报错OOM。

6.后面又将mapreduce.input.fileinputformat.split.maxsize从1GB,减少为512MB,256MB,从而增大map数量,缩小单个map处理文件的大小。依旧报错OOM。

7.最后启用hive.optimize.sort.dynamic.partition,增加reduce过程,作业执行成功。

8.最后查看结果文件大约1.2TB,约为输入文件的三分之一。一共1557个分区,最大的分区文件为2GB。

4.异常总结


对于这个异常,我们建议有以下三种方式来处理:

1.启用hive.optimize.sort.dynamic.partition,将其设置为true。通过这个优化,这个只有map任务的mapreduce会引入reduce过程,这样动态分区的那个字段比如日期在传到reducer时会被排序。由于分区字段是排序的,因此每个reducer只需要保持一个文件写入器(file writer)随时处于打开状态,在收到来自特定分区的所有行后,关闭记录写入器(record writer),从而减小内存压力。这种优化方式在写parquet文件时使用的内存要相对少一些,但代价是要对分区字段进行排序。

SET hive.optimize.sort.dynamic.partition=true; 
INSERT OVERWRITE TABLE [table] SELECT ...

2.第二种方式就是增加每个mapper的内存分配,即增大mapreduce.map.memory.mb和mapreduce.map.java.opts,这样所有文件写入器(filewriter)缓冲区对应的内存会更充沛。

3.将查询分解为几个较小的查询,以减少每个查询创建的分区数量。这样可以让每个mapper打开较少的文件写入器(file writer)。

备注:

默认情况下,Hive为每个打开的Parquet文件缓冲区(file buffer)分配128MB。这个buffer大小由参数parquet.block.size控制。为获得最佳性能,parquet的buffer size需要与HDFS的block size保持对齐(比如相等),从而使每个parquet文件在单个HDFS的块中,以便每个I/O请求都可以读取整个数据文件,而无需通过网络传输访问后续的block。

-- set Parquetbuffer size to 256MB (in bytes)
set parquet.block.size=268435456;

参考:

https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties

http://blog.cloudera.com/blog/2014/03/how-to-use-parquet-with-impala-hive-pig-mapreduce/

https://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_parquet.html

https://issues.cloudera.org/browse/IMPALA-2521

https://issues.apache.org/jira/browse/HIVE-6455

http://blog.csdn.net/qq_26937525/article/details/54946281

提示:代码块部分可以左右滑动查看噢 为天地立心,为生民立命,为往圣继绝学,为万世开太平。 温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。

推荐关注Hadoop实操,第一时间,分享更多Hadoop干货,欢迎转发和分享。

原创文章,欢迎转载,转载请注明:转载自微信公众号Hadoop实操

原文发布于微信公众号 - Hadoop实操(gh_c4c535955d0f)

原文发表时间:2018-03-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Hadoop实操

如何在Kerberos环境的CDH集群外跨OS版本中在指定目录配置HDFS的Gateway节点

在前面的文章Fayson介绍了《如何在CDH集群外配置非Kerberos环境的Gateway节点》和《如何在CDH集群外配置Kerberos环境的Gateway...

2132
来自专栏大数据技术学习

大数据-Hadoop小文件问题解决方案

HDFS中小文件是指文件size小于HDFS上block(dfs block size)大小的文件。大量的小文件会给Hadoop的扩展性和性能带来严重的影响。

2927
来自专栏Hadoop实操

如何迁移Cloudera Manager节点

本文档讲述如何将Cloudera Manager在Kerberos环境下迁移至新的CM节点。通过本文档,您将学习到以下知识:

8246
来自专栏我是攻城师

Apache Pig入门学习文档(一)

3975
来自专栏我是攻城师

hive on spark 测试

3689
来自专栏祝威廉

使用Spark SQL构建批处理程序

在批处理模式下,所有的数据源和输出都各自有一个固定的模块(使用了Spark的Datasource API),然后对模块做配置即可,无需使用不同的模块。

1163
来自专栏云计算教程系列

如何在Ubuntu 18.04上以独立模式安装Hadoop

Hadoop是一个基于Java的编程框架,支持在廉价机器集群上处理和存储极大数据集。它是大数据竞争领域的第一个主要开源项目,由Apache Software F...

2202
来自专栏Hadoop实操

如何为Kerberos环境的CDH集群在线扩容数据节点

Hadoop集群其中一个优点就是可伸缩性(横向扩展),通过增加计算节点使服务容量产生线性增长的能力。可伸缩的应用程序的主要特点是:只需要增加资源,而不需要对应用...

5898
来自专栏Hadoop实操

如何禁用CDH集群Kerberos

6816
来自专栏Hadoop实操

如何通过Cloudera Manager为Kafka启用Kerberos及使用

在CDH集群中启用了Kerberos认证,那么我们的Kafka集群能否与Kerberos认证服务集成呢?本篇文章主要讲述如何通过Cloudera Manager...

6499

扫码关注云+社区

领取腾讯云代金券